CoordinatedGeometry
CeilingAndFloor
AIME
2010
For a real number $a$, let $\lfloor a \rfloor$ denominate the greatest integer less than or equal to $a$. Let $\mathcal{R}$ denote the region in the coordinate plane consisting of points $(x,y)$ such that $\Big\lfloor x \Big\rfloor ^2 + \Big\lfloor y \Big\rfloor ^2 = 25$. The region $\mathcal{R}$ is completely contained in a disk of radius $r$ (a disk is the union of a circle and its interior). The minimum value of $r$ can be written as $\frac {\sqrt {m}}{n}$, where $m$ and $n$ are integers and $m$ is not divisible by the square of any prime. Find $m + n$.
The solution for this problem is available for
$0.99.
You can also purchase a pass for all available solutions for
$99.