Sequence
2007


Problem - 2339
Sequence $ \{a_{n}\}$ is defined by $ a_{1}= 2007,\, a_{n+1}=\frac{a_{n}^{2}}{a_{n}+1}$ for $ n \ge 1.$ Prove that $ [a_{n}] =2007-n$ for $ 0 \le n \le 1004,$ where $ [x]$ denotes the largest integer no larger than $ x.$

report an error