ComplexNumberApplication
Triangle
2003
Given triangle $ABC$, construct equilateral triangle $ABC_1$, $BCA_1$, $CAB_1$ on the outside of $ABC$. Let $P, Q$ denote the midpoints of $C_1A_1$ and $C_1B_1$ respectively. Let $R$ be the midpoint of $AB$.
Prove that triangle $PQR$ is isosceles.