Find the derivative of function $y=\sin{x}$.
Find the derivative of $\arcsin{x}$.
Let $f(x)$ be an odd function which is differentiable over $(-\infty, +\infty)$. Show that $f'(x)$ is even.
Compute the limit of the power series below as a rational function in $x$:
$$1\cdot 2 + (2\cdot 3)x + (3\cdot 4)x^2 + (4\cdot 5)x^3 + (5\cdot 6)x^4+\cdots,\qquad (|x| < 1)$$
Compute $$1-\frac{1\times 2}{2}+\frac{2\times 3}{2^2}-\frac{3\times 4}{2^3}+\frac{4\times 5}{2^4}-\cdots$$
Construct one polynomial $f(x)$ with real coefficients and with all of the following properties:
Find the coordinates of the center of mass of the $\frac{1}{4}$ disc defined by
$$\{(x, y) | x\ge 0, y\ge 0, x^2 + y^2 \le 1\}$$
assuming the density is uniform.
Consider the ellipse $x^2+\frac{y^2}{4}=1$. What is the area of the smallest diamond shape with
two vertices on the $x$-axis and two vertices on the $y$-axis that contains this ellipse?
Compute $$I=\int \frac{x\cos{x}-\sin{x}}{x^2 + \sin^2{x}} dx$$
Find the maximum and minimal values of the function
$$f(x)=(x^2-4)^8 -128\sqrt{4-x^2}$$
over its domain.
Find all quadratic polynomials $p(x)=ax^2 + bx + c$ such that graphs of $p(x)$ and $p'(x)$ are tangent to each other at point $(2, 1)$.
Determine if the following infinite series is convergent or divergent:
$$\sum_{n=2}^{\infty}\frac{1}{(\ln n)^{\ln \ln n}}$$
Show that $\ln x < \sqrt{x}$ holds for all positive $x$.
Evaluate $$\int_{0}^{\pi}\frac{x\sin{x}}{1+\cos^2 x}dx$$
Let $f(x)=\int_1^x\frac{\ln{x}}{1+x}dx$ for $x > 0$. Find $f(x)+f(\frac{1}{x})$.
Compute $$\lim_{x\to 0}\frac{\int_0^x\sin(xt)^2dt}{x^5}$$
Compute
$$\int_0^{\infty}\frac{x^2}{1+x^4}dx$$
Evaluate $\displaystyle\lim_{n\to\infty}S_n$ where
$$S_n = 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots + (-1)^{n-1}\frac{1}{n}$$
Determine the values of $\alpha$ and $\beta$ such that
$$\lim_{n\to\infty}\frac{n^{\alpha}}{n^{\beta}-(n-1)^{\beta}}=2020$$
Evaluate
$$\int_0^1 x\arcsin{x}d{x}$$
Evaluate
$$\int_0^1 \sqrt{1-x^2} d{x}$$
Compute
$$I= \iiint \limits_S \frac{dx dy dz}{(1+x+y+z)^2}$$
where $S=\{x\ge 0, y\ge 0, z\ge 0, x+y+z\le 1\}$.
Compute $$\int \ln{x} dx$$