Practice (Basic)

back to index  |  new

Compute $$\cos\frac{2\pi}{7} \cdot \cos \frac{4\pi}{7}\cdot \cos \frac{8\pi}{7} $$

Compute $$\sin^2 10^\circ + \cos^2 40^\circ + \sin 10^\circ \cos 40^\circ$$

Let $a$, $b$, $c$, $d$, and $e$ be five positive integers. If $ab+c=3115$, $c^2+d^2=e^2$, both $a$ and $c$ are prime numbers, $b$ is even and has $11$ divisors. Find these five numbers

Compute the value of $\sin{18^\circ}$ using regular geometry.

Let $k$ be a positive integer, show that $(4k+3)$ cannot be a square number.

How many numbers in this series are squares? $$1, 14, 144, 1444, 14444, \cdots$$


Solve the following equation in positive integers: $15x - 35y + 3 = z^2$

Solve the following equation in positive integers: $3\times (5x + 1)=y^2$


Find all pairs of integers $(x, y)$ such that $5\times (x^2 + 3)= y^2$.


Let both $A$ and $B$ be two-digit numbers, and their difference is $14$. If the last two digits of $A^2$ and $B^2$ are the same, what are all the possible values of $A$ and $B$.

Find such a positive integer $n$ such that both $(n-100)$ and $(n-63)$ are square numbers.

Find such a positive integer $n$ such that both $(n+23)$ and $(n-30)$ are square numbers.

Find the smallest positive integer $n$ such that $\frac{12!}{n}$ is a square.

Find all the integer solutions to the equation $xy - 10(x+ y)= 1$.


Solve in integers the equation $x^2 - xy +2x -3 y = 0$


In $\triangle{ABC}$, $AB=AC$. Extending $CA$ to an arbitrary point $P$. Extending $AB$ to point $Q$ such that $AP=BQ$. Let $O$ be the circumcenter of $\triangle{ABC}$. Show that $A$, $P$, $Q$, and $O$ concyclic.


Let function $f(x)$ is defined as the following: $$ f(x)= \left\{ \begin{array}{ll} x+2 &, \text{if } x \le -1\\ 2x &, \text{if } -1 < x < 2\\ \displaystyle\frac{x^2}{2} &, \text{if } x \ge 2 \end{array} \right. $$ (A) Compute $f(f(f(-\frac{7}{4})))$ (B) If $f(a)=3$, find the value of $a$


Let $f(x)$ be an odd function and $g(x)$ be an even function. If $f(x)+g(x)=\frac{1}{x-1}$, find $f(x)$ and $g(x)$.

If $f\Big(\displaystyle\frac{x+1}{x}\Big)=\displaystyle\frac{x^2+x+1}{x^2}$, find $f(x)$.

Let $G$ be the centroid of $\triangle{ABC}$, $L$ be a straight line. Prove that $$GG'=\frac{AA'+BB'+CC'}{3}$$ where $A'$, $B'$, $C'$ and $G'$ are the feet of perpendicular lines from $A$, $B$, $C$, and $G$ to $L$.

Let $a, b, c$ be respectively the lengths of three sides of a triangle, and $r$ be the triangle's inradius. Show that $$r = \frac{1}{2}\sqrt{\frac{(b+c-a)(c+a-b)(b+a-c)}{a+b+c}}$$

What is the area that is covered by putting a $8\times 6$ rectangle and a $5 \times 5$ square as shown on a table?


Restaurant MAS offers a set menu with $3$ choices of appetizers, $5$ choices of main dishes, and $2$ choices of desserts. How many possible combinations can a customer have for one appetizer, one main dish, and one dessert?


Eight chairs are arranged in two equal rows for a group of $8$. Joe and Mary must sit in the front row. Jack must sit in the back row. How many different seating plans can they have?


Two Britons, three Americans, and six Chinese form a line:

  • How many different ways can the $11$ individuals line up?
  • If two people of the same nationality cannot stand next to each other, how many different ways can the $11$ individuals line up?