Points $A,B,C$ and $D$ lie on a line, in that order, with $AB = CD$ and $BC = 12$. Point $E$ is not on the line, and $BE = CE = 10$. The perimeter of $\triangle AED$ is twice the perimeter of $\triangle BEC$. Find $AB$.
Tina randomly selects two distinct numbers from the set {1, 2, 3, 4, 5}, and Sergio randomly selects a number from the set {1, 2, ..., 10}. What is the probability that Sergio's number is larger than the sum of the two numbers chosen by Tina?
In trapezoid $ABCD$ with bases $AB$ and $CD$, we have $AB = 52$, $BC = 12$, $CD = 39$, and $DA = 5$ (diagram not to scale). The area of $ABCD$ is
Mary typed a six-digit number, but the two 1s she typed didn't show. What appeared was 2002. How many different six-digit numbers could she have typed?
How many ordered triples of positive integers $(x, y, z)$ satisfy $(x^y)^z = 64$?
Let $P(x) = kx^3 + 2k^2x^2 + k^3$. Find the sum of all real numbers $k$ for which $x - 2$ is a factor of $P(x)$.
The vertex $E$ of square $EFGH$ is at the center of square $ABC$D. The length of a side of $ABCD$ is 1 and the length of a side of $EFGH$ is 2. Side $EF$ intersects $CD$ at $I$ and $EH$ intersects $AD$ at $J$. If angle $EID = 60^\circ$, what is the area of quadrilateral $EIDJ$?
What is the smallest integer n for which any subset of {1, 2, 3, . . . , 20} of size $n$ must contain two numbers that differ by 8?
Let $f$ be a real-valued function such that $f(x) + 2f(\frac{2002}{x}) = 3x$ for all $x > 0$. Find $f(2)$.
In how many zeros does the number $\frac{2002!}{(1001!)^2}$ end?
What is the maximum value of $n$ for which there is a set of distinct positive integers $k_1$, $k_2$, $\dots$ , $k_n$ for which $$k_1^2 + k_2^2 + \cdots +k_n^2 = 2002$$
Under the new AMC 10, 12 scoring method, 6 points are given for each correct answer, 2.5 points are given for each unanswered question, and no points are given for an incorrect answer. Some of the possible scores between 0 and 150
can be obtained in only one way, for example, the only way to obtain a score of 146.5 is to have 24 correct answers and one unanswered question. Some scores can be obtained in exactly two ways; for example, a score of 104.5 can
be obtained with 17 correct answers, 1 unanswered question, and 7 incorrect, and also with 12 correct answers and 13 unanswered questions. There are three scores that can be obtained in exactly three ways. What is their sum?
How many three-digit numbers have at least one $2$ and at least one $3$?
A set of three points is randomly chosen from the grid shown. Each three point set has the same probability of being chosen. What is the probability that the points lie on the same straight line?
A game is played with tokens according to the following rule. In each round, the player with the most tokens gives one token to each of the other players and also places one token in the discard pile. The game ends when some player runs out of tokens. Players $A$, $B$, and $C$ start with $15$, $14$, and $13$ tokens, respectively. How many rounds will there be in the game?
The average value of all the pennies, nickels, dimes, and quarters in Paula's purse is $20$ cents. If she had one more quarter, the average would be $21$ cents. How many dimes does she have in her purse?
Brenda and Sally run in opposite directions on a circular track, starting at diametrically opposite points. They first meet after Brenda has run 100 meters. They next meet after Sally has run 150 meters past their first meeting point. Each girl runs at a constant speed. What is the length of the track in meters?
A sequence of three real numbers forms an arithmetic progression with a first term of 9. If 2 is added to the second term and 20 is added to the third term, the three resulting numbers form a geometric progression. What is the smallest possible value for the third term of the geometric progression?
A white cylindrical silo has a diameter of 30 feet and a height of 80 feet. A red stripe with a horizontal width of 3 feet is painted on the silo, as shown, making two complete revolutions around it. What is the area of the stripe in square feet?
Points $E$ and $F$ are located on square $ABCD$ so that $\triangle BEF$ is equilateral. What is the ratio of the area of $\triangle DEF$ to that of $\triangle ABE$?
Two distinct lines pass through the center of three concentric circles of radii 3, 2, and 1. The area of the shaded region in the diagram is $\frac{8}{13}$ of the area of the unshaded region. What is the radian measure of the acute angle formed by the two lines? (Note: $\pi$ radians is $180$ degrees.)
Square $ABCD$ has side length $2$. A semicircle with diameter $\overline{AB}$ is constructed inside the square, and the tangent to the semicircle from $C$ intersects side $\overline{AD}$ at $E$. What is the length of $\overline{CE}$?

Circles $A$, $B$, and $C$ are externally tangent to each other and internally tangent to circle $D$. Circles $B$ and $C$ are congruent. Circle $A$ has radius $1$ and passes through the center of $D$. What is the radius of circle $B$?
Let $a_1,a_2,\cdots$, be a sequence with the following properties.
(i) $a_1=1$, and
(ii) $a_{2n}=n\cdot a_n$ for any positive integer $n$.
What is the value of $a_{2^{100}}$?
Three pairwise-tangent spheres of radius 1 rest on a horizontal plane. A sphere of radius 2 rests on them. What is the distance from the plane to the top of the larger sphere?