Practice (2)

back to index  |  new

How many non-similar triangles have angles whose degree measures are distinct positive integers in arithmetic progression?

How many four-digit positive integers have at least one digit that is a $2$ or a $3$?

Two farmers agree that pigs are worth $300$ dollars and that goats are worth $210$ dollars. When one farmer owes the other money, he pays the debt in pigs or goats, with "change" received in the form of goats or pigs as necessary. (For example, a $390$ dollar debt could be paid with two pigs, with one goat received in change.) What is the amount of the smallest positive debt that can be resolved in this way?

Circles with centers $A$ and $B$ have radii 3 and 8, respectively. A common internal tangent intersects the circles at $C$ and $D$, respectively. Lines $AB$ and $CD$ intersect at $E$, and $AE=5$. What is $CD$?


Centers of adjacent faces of a unit cube are joined to form a regular octahedron. What is the volume of this octahedron?

A bug starts at one vertex of a cube and moves along the edges of the cube according to the following rule. At each vertex the bug will choose to travel along one of the three edges emanating from that vertex. Each edge has equal probability of being chosen, and all choices are independent. What is the probability that after seven moves the bug will have visited every vertex exactly once?

What is $(-1)^{1} + (-1)^{2} + ... + (-1)^{2006}$ ?

For real numbers $x$ and $y$, define $x \spadesuit y = (x+y)(x-y)$. What is $3 \spadesuit (4 \spadesuit 5)$?

A football game was played between two teams, the Cougars and the Panthers. The two teams scored a total of 34 points, and the Cougars won by a margin of 14 points. How many points did the Panthers score?

Circles of diameter 1 inch and 3 inches have the same center. The smaller circle is painted red, and the portion outside the smaller circle and inside the larger circle is painted blue. What is the ratio of the blue-painted area to the red-painted area?


A $2 \times 3$ rectangle and a $3 \times 4$ rectangle are contained within a square without overlapping at any point, and the sides of the square are parallel to the sides of the two given rectangles. What is the smallest possible area of the square?

A region is bounded by semicircular arcs constructed on the side of a square whose sides measure $\frac{2}{\pi}$, as shown. What is the perimeter of this region?


Which of the following is equivalent to $\sqrt{\frac{x}{1-\frac{x-1}{x}}}$ when $x < 0$?

A square of area 40 is inscribed in a semicircle as shown. What is the area of the semicircle?


Francesca uses 100 grams of lemon juce, 100 grams of sugar, and 400 grams of water to make lemonade. There are 25 calories in 100 grams of lemon juice and 386 calories in 100 grams of sugar. Water contains no calories. How many calories are in 200 grams of her lemonade?

In a triangle with integer side lengths, one side is three times as long as a second side, and the length of the third side is 15. What is the greatest possible perimeter of the triangle?

The lines $x=\frac{1}{4}y+a$ and $y=\frac{1}{4}x+b$ intersect at the point $(1,2)$. What is $a+b$?

Joe and JoAnn each bought 12 ounces of coffee in a 16 ounce cup. Joe drank 2 ounces of his coffee and then added 2 ounces of cream. JoAnn added 2 ounces of cream, stirred the coffee well, and then drank 2 ounces. What is the resulting ratio of the amount of cream in Joe's coffee to that in JoAnn's coffee?

Let $a$ and $b$ be the roots of the equation $x^2-mx+2=0$. Suppose that $a+\frac1b$ and $b+\frac1a$ are the roots of the equation $x^2-px+q=0$. What is $q$?

Rhombus $ABCD$ is similar to rhombus $BFDE$. The area of rhombus $ABCD$ is $24$ and $\angle BAD = 60^\circ$. What is the area of rhombus $BFDE$?


Leap Day, February 29, 2004, occured on a Sunday. On what day of the week will Leap Day, February 29, 2020, occur?

Bob and Alice each have a bag that contains one ball of each of the colors blue, green, orange, red, and violet. Alice randomly selects one ball from her bag and puts it into Bob's bag. Bob then randomly selects one ball from his bag and puts it into Alice's bag. What is the probability that after this process the contents of the two bags are the same?

Let $a_1 , a_2 , ...$ be a sequence for which$a_1=2$ , $a_2=3$, and $a_n=\frac{a_{n-1}}{a_{n-2}}$ for each positive integer $n \ge 3$. What is $a_{2006}$?

A circle of radius $2$ is centered at $O$. Square $OABC$ has side length $1$. Sides $AB$ and $CB$ are extended past $B$ to meet the circle at $D$ and $E$, respectively. What is the area of the shaded region in the figure, which is bounded by $BD$, $BE$, and the minor arc connecting $D$ and $E$?


In rectangle $ABCD$, we have $A=(6,-22)$, $B=(2006,178)$, $D=(8,y)$, for some integer $y$. What is the area of rectangle $ABCD$?