Practice (97)

back to index  |  new

Solve in positive integers $\big(1+\frac{1}{x}\big)\big(1+\frac{1}{y}\big)\big(1+\frac{1}{z}\big)=2$


Find all positive integers $n$ and $k_i$ $(1\le i \le n)$ such that $$k_1 + k_2 + \cdots + k_n = 5n-4$$ and $$\frac{1}{k_1} + \frac{1}{k_2} + \cdots + \frac{1}{k_n}=1$$


Solve in positive integers the equation $$3(xy+yz+zx)=4xyz$$


For how many positive integers $m$ is there at least 1 positive integer $n$ such that $mn \le m + n$?

For each positive integer $n$, let $s(n)$ denote the number of ordered positive integer pair $(x, y)$ for which $\frac{1}{x} + \frac{1}{y} = \frac{1}{n}$ holds. Find all positive integers $n$ for which $s(n) = 5$.


Show that for any right triangle whose sides' lengths are all integers, - one side's length must be a multiple of 3, and - one side's length must be a multiple of 4, and - one side's length must be a multiple of 5 Please note these sides may not be distinct. For example, in a 5-12-13 triangle, 12 is a multiple of both 3 and 4.

Solve in integers the equation $x^2 + y^2 - 1 = 4xy$


Solve in $\textit{rational}$ numbers the equation $x^2 - dy^2 = 1$ where $d$ is an integer.

Let $x$ be a positive real number, and $\lfloor{x}\rfloor$ be the largest integer that not exceeding $x$. Prove that there exist infinity number of positive integers, $n$, such that $\lfloor{\sqrt{2}}\ n\rfloor$ is a perfect square.


Show that there are infinitely many integers $n$ such that $2n + 1$ and $3n + 1$ are perfect squares, and that such $n$ must be multiples of $40$.


Show that the equation $x^2 + y^3 = z^4$ has infinitely many integer solutions.


Find all $n\in\mathbb{N}$ such that $$\binom{n}{k-1} = 2 \binom{n}{k} + \binom{n}{k+1}$$

for some natural number $k < n$.


Prove that if $m=2+2\sqrt{28n^2 +1}$ is an integer for some $n\in\mathbb{N}$, then $m$ is a perfect square.


Prove that if the difference of two consecutive cubes is $n^2$, $n\in\mathbb{N}$, then $(2n-1)$ is a square.


If $n$ is an integer such that the values of $(3n+1)$ and $(4n+1)$ are both squares, prove that $n$ is a multiple of $56$.


Let $p$ be a prime. Prove that the equation $x^2-py^2 = -1$ has integral solution if and only if $p=2$ or $p\equiv 1\pmod{4}$.


Let integers $a$, $b$ and $c$ be the lengths of a right triangle's three sides, where $c > b > a$. Show that $\frac{(c-a)(c-b)}{2}$ must be a square number.

If $p$ is a prime of the form $4k+3$, show that exactly one of the equations $x^2-py^2=\pm 2$ has an integral solution.


Show that if $\frac{x^2+1}{y^2}+4$ is a perfect square, then this square equals $9$.

Solve in non-negative integers the equation $$x^3 + 2y^3 = 4z^3$$

Solve in nonnegative integers the equation $$2^x -1 = xy$$


Solve in integers the equation $x^2+y^2+z^2-2xyz=0$

For any given positive integer $n > 2$, show that there exists a right triangle with all sides' lengths are integers and one side's length equals $n$.

Show that the equation $x^4 + y^4 = z^2$ is not solvable in integers if $xyz\ne 0$.

Show that $\sqrt{2}$ is an irrational number.