Practice (91)

back to index  |  new

510
What is the sum of the exponents of the prime factors of the square root of the largest perfect square that divides $12!$ ?

516
The number $2013$ is expressed in the form $2013 = \frac {a_1!a_2!...a_m!}{b_1!b_2!...b_n!}$, where $a_1 \ge a_2 \ge \cdots \ge a_m$ and $b_1 \ge b_2 \ge \cdots \ge b_n$ are positive integers and $a_1 + b_1$ is as small as possible. What is $|a_1 - b_1|$?

527
Julia's age is a two-digit multiple of $5$, and when Julia's age is divided by $2$, $3$, $4$, $6$ or $8$, the remainder is always $1$. If Julia is five times as old as Bart, how old is Bart?

529
If $p$ is the greatest prime whose digits are distinct prime numbers, what is the units digit of $p^2$?

535
When the integers 1 through 7 are written in base two, what fraction of the digits are 1s? Express your answer as a common fraction.

543

Six different prime numbers are placed in the six different circles shown. The three circles on each side of the triangle have the same sum. What is the least possible value of the side sum?


561
Let $S$ be a subset of $\{1,2,3,\dots,30\}$ with the property that no pair of distinct elements in $S$ has a sum divisible by $5$. What is the largest possible size of $S$?

574
Two integers have a sum of $26$. when two more integers are added to the first two, the sum is $41$. Finally, when two more integers are added to the sum of the previous $4$ integers, the sum is $57$. What is the minimum number of even integers among the $6$ integers?

580
In the equation below, $A$ and $B$ are consecutive positive integers, and $A$, $B$, and $A+B$ represent number bases: \[132_A+43_B=69_{A+B}.\] What is $A+B$?

596
A small bottle of shampoo can hold $35$ milliliters of shampoo, whereas a large bottle can hold $500$ milliliters of shampoo. Jasmine wants to buy the minimum number of small bottles necessary to completely fill a large bottle. How many bottles must she buy?

622
In multiplying two positive integers $a$ and $b$, Ron reversed the digits of the two-digit number $a$. His erroneous product was $161.$ What is the correct value of the product of $a$ and $b$?

623
Let $N$ be the second smallest positive integer that is divisible by every positive integer less than $7$. What is the sum of the digits of $N$?

633
How many positive two-digits integers are factors of $2^{24}-1$?

637
A lattice point in an $xy$-coordinate system is any point $(x, y)$ where both $x$ and $y$ are integers. The graph of $y = mx + 2$ passes through no lattice point with $0 < x \leq 100$ for all $m$ such that $\frac{1}{2} < m < a$. What is the maximum possible value of $a$?

693
For every integer $n\ge2$, let $\text{pow}(n)$ be the largest power of the largest prime that divides $n$. For example $\text{pow}(144)=\text{pow}(2^4\cdot3^2)=3^2$. What is the largest integer $m$ such that $2010^m$ divides $\displaystyle\prod_{n=2}^{5300}\text{pow}(n)$?

705
How many positive integers less than $1000$ are $6$ times the sum of their digits?

737
For each positive integer $n$, let $f(n) = n^4 - 360n^2 + 400$. What is the sum of all values of $f(n)$ that are prime numbers?

807
Let a, b, c, d, and e be distinct integers such that $(6-a)(6-b)(6-c)(6-d)(6-e)=45$ What is $a+b+c+d+e$?

839
The first $2007$ positive integers are each written in base $3$. How many of these base-$3$ representations are palindromes? (A palindrome is a number that reads the same forward and backward.)

890
Suppose $a$, $b$ and $c$ are positive integers with $a+b+c=2006$, and $a!b!c!=m\cdot 10^n$, where $m$ and $n$ are integers and $m$ is not divisible by $10$. What is the smallest possible value of $n$?

901
Let $A,M$, and $C$ be digits with \[(100A+10M+C)(A+M+C) = 2005\] What is $A$?

911
Call a number prime-looking if it is composite but not divisible by $2, 3,$ or $5.$ The three smallest prime-looking numbers are $49, 77$, and $91$. There are $168$ prime numbers less than $1000$. How many prime-looking numbers are there less than $1000$?

916
Two distinct numbers a and b are chosen randomly from the set $\{2, 2^2, 2^3, ..., 2^{25}\}$. What is the probability that $\mathrm{log}_a b$ is an integer?

933
The sum of four two-digit numbers is $221$. None of the eight digits is $0$ and no two of them are the same. Which of the following is not included among the eight digits?

939
A positive integer $n$ has $60$ divisors and $7n$ has $80$ divisors. What is the greatest integer $k$ such that $7^k$ divides $n$?