Contessa is taking a random lattice walk in the plane, starting at $(1, 1)$. (In a random lattice walk,
one moves up, down, left, or right $1$ unit with equal probability at each step.) If she lands on a point
of the form $(6m, 6n)$ for $m$, $n\in\mathbb{Z}$, she ascends to heaven, but if she lands on a point of the form $(6m+ 3, 6n+ 3)$ for $m,\ n\in\mathbb{Z}$, she descends to hell. What is the probability that she ascends to heaven?
Joe and Mary flip a coin ($n+1$) and $n$ times, respectively. What is the probability that Joe gets more heads than Mary does?
$\textbf{Seat on a Flight}$
There are $100$ airline passengers waiting in line to board a $100$-seat plane. For convenience, let the $n^{th}$ passenger in line hold a ticket for the $n^{th}$ seat. For some reasons, the first passenger decides to pick a random seat instead of his assigned seat (it is still possible that he or she picks the $1^{st}$ seat). Everybody will sit on his or her assigned seat unless this seat is occupied. In the latter case, that passenger will pick a random seat for himself or herself. Find the probability that the last passenger will sit on his or her assigned seat.
$\textbf{Boys v.s. Girls}$
In a remote town, people generally prefer boys over girls. Therefore, every married couple will continue giving birth to a baby until they have a son. Assuming there is fifty-fifty chance for a couple to give birth to a boy or a girl, what is the ratio of boys to girls in this town over many years?
A frog sitting at the point $(1, 2)$ begins a sequence of jumps, where each jump is parallel to one of the coordinate axes and has length $1$, and the direction of each jump (up, down, right, or left) is chosen independently at random. The sequence ends when the frog reaches a side of the square with vertices $(0,0), (0,4), (4,4),$ and $(4,0)$. What is the probability that the sequence of jumps ends on a vertical side of the square?