A pair of six-sided dice are labeled so that one die has only even numbers (two each of 2, 4, and 6), and the other die has only odd numbers (two of each 1, 3, and 5). The pair of dice is rolled. What is the probability that the sum of the numbers on the tops of the two dice is 7?
Adam, Benin, Chiang, Deshawn, Esther, and Fiona have internet accounts. Some, but not all, of them are internet friends with each other, and none of them has an internet friend outside this group. Each of them has the same number of internet friends. In how many different ways can this happen?
Real numbers $x$, $y$, and $z$ are chosen independently and at random from the interval $[0,n]$ for some positive integer $n$. The probability that no two of $x$, $y$, and $z$ are within 1 unit of each other is greater than $\frac {1}{2}$. What is the smallest possible value of $n$?
A dessert chef prepares the dessert for every day of a week starting with Sunday. The dessert each day is either cake, pie, ice cream, or pudding. The same dessert may not be served two days in a row. There must be cake on Friday because of a birthday. How many different dessert menus for the week are possible?
Suppose that one of every $500$ people in a certain population has a particular disease, which displays no symptoms. A blood test is available for screening for this disease. For a person who has this disease, the test always turns out positive. For a person who does not have the disease, however, there is a $2\%$ false positive rate--in other words, for such people, $98\%$ of the time the test will turn out negative, but $2\%$ of the time the test will turn out positive and will incorrectly indicate that the person has the disease. Let $p$ be the probability that a person who is chosen at random from this population and gets a positive test result actually has the disease. Find $p$.
Let ($a_1$, $a_2$, ... $a_{10}$) be a list of the first 10 positive integers such that for each $2\le$ $i$ $\le10$ either $a_i + 1$ or $a_i-1$ or both appear somewhere before $a_i$ in the list. How many such lists are there?
Amy, Beth, and Jo listen to four different songs and discuss which ones they like. No song is liked by all three. Furthermore, for each of the three pairs of the girls, there is at least one song liked by those two girls but disliked by the third. In how many different ways is this possible?
A bug travels from A to B along the segments in the hexagonal lattice pictured below. The segments marked with an arrow can be traveled only in the direction of the arrow, and the bug never travels the same segment more than once. How many different paths are there?
Set $A$ has $20$ elements, and set $B$ has $15$ elements. What is the smallest possible number of elements in $A \cup B$?
Last summer 30% of the birds living on Town Lake were geese, 25% were swans, 10% were herons, and 35% were ducks. What percent of the birds that were not swans were geese?
How many even integers are there between 200 and 700 whose digits are all different and come from the set {1,2,5,7,8,9}?
A pair of standard $6$-sided fair dice is rolled once. The sum of the numbers rolled determines the diameter of a circle. What is the probability that the numerical value of the area of the circle is less than the numerical value of the circle's circumference?
Two points on the circumference of a circle of radius $r$ are selected independently and at random. From each point a chord of length $r$ is drawn in a clockwise direction. What is the probability that the two chords intersect?
Two counterfeit coins of equal weight are mixed with $8$ identical genuine coins. The weight of each of the counterfeit coins is different from the weight of each of the genuine coins. A pair of coins is selected at random without replacement from the $10$ coins. A second pair is selected at random without replacement from the remaining $8$ coins. The combined weight of the first pair is equal to the combined weight of the second pair. What is the probability that all $4$ selected coins are genuine?
Each vertex of convex pentagon $ABCDE$ is to be assigned a color. There are $6$ colors to choose from, and the ends of each diagonal must have different colors. How many different colorings are possible?
Two real numbers are selected independently at random from the interval $[-20, 10]$. What is the probability that the product of those numbers is greater than zero?
A dart board is a regular octagon divided into regions as shown. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is probability that the dart lands within the center square?
Bernardo randomly picks 3 distinct numbers from the set $\{1,2,3,4,5,6,7,8,9\}$ and arranges them in descending order to form a 3-digit number. Silvia randomly picks 3 distinct numbers from the set $\{1,2,3,4,5,6,7,8\}$ and also arranges them in descending order to form a 3-digit number. What is the probability that Bernardo's number is larger than Silvia's number?
Eight points are chosen on a circle, and chords are drawn connecting every pair of points. No three chords intersect in a single point inside the circle. How many triangles with all three vertices in the interior of the circle are created?
Each of $2010$ boxes in a line contains a single red marble, and for $1 \le k \le 2010$, the box in the $k\text{th}$ position also contains $k$ white marbles. Isabella begins at the first box and successively draws a single marble at random from each box, in order. She stops when she first draws a red marble. Let $P(n)$ be the probability that Isabella stops after drawing exactly $n$ marbles. What is the smallest value of $n$ for which $P(n) < \frac{1}{2010}$?
A drawer contains red, green, blue, and white socks with at least 2 of each color. What is the minimum number of socks that must be pulled from the drawer to guarantee a matching pair?
Positive integers $a$, $b$, and $c$ are randomly and independently selected with replacement from the set $\{1, 2, 3,\dots, 2010\}$. What is the probability that $abc + ab + a$ is divisible by $3$?
A palindrome between $1000$ and $10,000$ is chosen at random. What is the probability that it is divisible by $7$?
Seven distinct pieces of candy are to be distributed among three bags. The red bag and the blue bag must each receive at least one piece of candy; the white bag may remain empty. How many arrangements are possible?
Two cubical dice each have removable numbers $1$ through $6$. The twelve numbers on the two dice are removed, put into a bag, then drawn one at a time and randomly reattached to the faces of the cubes, one number to each face. The dice are then rolled and the numbers on the two top faces are added. What is the probability that the sum is $7$?