Let $T$ be the triangle in the coordinate plane with vertices $\left(0,0\right)$, $\left(4,0\right)$, and $\left(0,3\right)$. Consider the following five isometries (rigid transformations) of the plane: rotations of $90^{\circ}$, $180^{\circ}$, and $270^{\circ}$ counterclockwise around the origin, reflection across the $x$-axis, and reflection across the $y$-axis. How many of the $125$ sequences of three of these transformations (not necessarily distinct) will return $T$ to its original position? (For example, a $180^{\circ}$ rotation, followed by a reflection across the $x$-axis, followed by a reflection across the $y$-axis will return $T$ to its original position, but a $90^{\circ}$ rotation, followed by a reflection across the $x$-axis, followed by another reflection across the $x$-axis will not return $T$ to its original position.)
How many positive integers $n$ are there such that $n$ is a multiple of $5$, and the least common multiple of $5!$ and $n$ equals $5$ times the greatest common divisor of $10!$ and $n$?
Jason rolls three fair standard six-sided dice. Then he looks at the rolls and chooses a subset of the dice (possibly empty, possibly all three dice) to reroll. After rerolling, he wins if and only if the sum of the numbers face up on the three dice is exactly $7$. Jason always plays to optimize his chances of winning. What is the probability that he chooses to reroll exactly two of the dice?
Explain why we cannot apply the cut-the-rope technique to count the non-negative integer solutions to the equation $$x_1 + x_2 + \cdots + x_k = n$$
For example, can we allow two cuts in the same interval thus to model one of the $x_i$ is zero?
Let $n \ge k$ are two positive integers. Given function $x_1+x_2+\cdots + x_k =n$,
Explain why the count of positive / non-negative integer solutions to the equation $x_1 + x_2 + \cdots + x_k=n$ is equivalent to the case of putting $n$ indistinguishable balls into $k$ distinguishable boxes.
Randomly draw a card twice with replacement from $1$ to $10$, inclusive. What is the probability that the product of these two cards is a multiple of $7$?
How many even $4$- digit integers are there whose digits are distinct?
Derive the permutation formula $P_n^n=n\times (n-1)\times\cdots\times 2\times 1$ using the recursion method.