The polygon shown here is constructed from two squares and six equilateral triangles, each of side length 6 units. This polygon may be folded into a polyhedron by creasing along the dotted lines and joining adjacent edges as indicated by the arrows. What is the volume of the resulting polyhedron? Express your answer in simplest radical form.
A plane passing through the vertex $A$ and the center of its inscribed sphere of a tetrahedron $ABCD$ intersects its edge $BC$ and $CD$ at point $E$ and $F$, as shown. If $AEF$ divides this tetrahedron into two equal volume parts: $A-BDEF$ and $A-CEF$, what is the relationship between these two parts' surface areas $S_1$ and $S_2$ where $S_1 = S_{A-BDEF}$ and $S_1=S_{A-CEF}$? $(A) S_1 < S_2\quad(B) S_1 > S_2\quad (C) S_1 = S_2 \quad(D) $ cannot determine
In tetrahedron $ABCD$, $\angle{ADB} = \angle{BDC} = \angle{CDA} = 60^\circ$, $AD=BD=3$, and $CD=2$. Find the radius of $ABCD$'s circumsphere.
A right hexagonal prism has height $2$. The bases are regular hexagons with side length $1$. Any $3$ of the $12$ vertices determine a triangle. Find the number of these triangles that are isosceles (including equilateral triangles).