Let $ABCD$ be a convex quadrilateral for which $AC = BD$. Equilateral triangles are constructed on the sides of the quadrilateral and pointing outward. Let $O_1, O_2, O_3, O_4$ be the centres of the triangles constructed on $AB, BC, CD,$ and $DA$ respectively. Prove that lines $O_1O_3$ and $O_2O_4$ are perpendicular.
Let $ABC$ be a triangle. Triangles $PAB$ and $QAC$ are constructed outside of $ABC$ such that $AP = AB$ and $AQ = AC$ and $\angle BAP = \angle CAQ$. Segments $BQ$ and $CP$ meet at $R$. Let $O$ be the circumcentre of triangle $BCR$. Prove that $AO \perp PQ$.
Let unit vectors $a$, $b$, and $c$ satisfy $a+b+c=0$, prove the angles between these vectors are all $120^\circ$.
What is the area of region bounded by the graphs of $y=|x+2| -|x-2|$ and $y=|x+1|-|x-3|$?
Let $n$ be a positive integer. In $n$-dimensional space, consider the $2^n$ points whose coordinates are all $\pm 1$. Imagine placing an $n$-dimensional ball of radius 1 center at each of the $2^n$ points. let $B_n$ be the largest $n$-dimensional ball centered at the origin that does not intersect the interior of any of the original $2^n$ balls. What is the smallest value of $n$ such that $B_n$ contains a point with a coordinate greater than 2?
Let $C$ be a three-dimensional cube with edge length 1. There are 8 equilateral triangles whose vertices are vertices of $C$. The 8 planes that contain these 8 equilateral triangles divide $C$ into several non-overlapping regions. Find the volume of the region that contains the center of $C$.
In the diagram below, the circle with center $A$ is congruent to and tangent to the circle with center $B$. A third circle is tangent to the circle with center $A$ at point $C$ and passes through point $B$. Points $C, A$, and $B$ are collinear. The line segment $\overline{CDEFG}$ intersects the circles at the indicated points. Suppose that $DE=6$ and $FG=9$. Find $AG$.
In the diagram $ABCDEFG$ is a regular heptagon (a 7 sided polygon). Shown is the star $AEBFCGD$. The degree measure of the obtuse angle formed by $AE$ and $CG$ is $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
%%
Each of the small circles in the figure has radius one. The innermost circle is tangent to the six circles that surround it, and each of those circles is tangent to the large circle and to its small-circle neighbors. Find the area of the shaded region.
A $45^\circ$ arc of circle A is equal in length to a $30^\circ$ arc of circle B. What is the ratio of circle A's area and circle B's area?
Betsy designed a flag using blue triangles, small white squares, and a red center square, as shown. Let $B$ be the total area of the blue triangles, $W$ the total area of the white squares, and $R$ the area of the red square. Which of the following is correct?
Given a triangle with side lengths 15, 20, and 25, find the triangle's smallest height.
Spot's doghouse has a regular hexagonal base that measures one yard on each side. He is tethered to a vertex with a two-yard rope. What is the area, in square yards, of the region outside of the doghouse that Spot can reach?
Points $A,B,C,D,E$ and $F$ lie, in that order, on $\overline{AF}$, dividing it into five segments, each of length 1. Point $G$ is not on line $AF$. Point $H$ lies on $\overline{GD}$, and point $J$ lies on $\overline{GF}$. The line segments $\overline{HC}, \overline{JE},$ and $\overline{AG}$ are parallel. Find $HC/JE$.
Points $A,B,C$ and $D$ lie on a line, in that order, with $AB = CD$ and $BC = 12$. Point $E$ is not on the line, and $BE = CE = 10$. The perimeter of $\triangle AED$ is twice the perimeter of $\triangle BEC$. Find $AB$.
In trapezoid $ABCD$ with bases $AB$ and $CD$, we have $AB = 52$, $BC = 12$, $CD = 39$, and $DA = 5$ (diagram not to scale). The area of $ABCD$ is
Show that for any right triangle whose sides' lengths are all integers,
- one side's length must be a multiple of 3, and
- one side's length must be a multiple of 4, and
- one side's length must be a multiple of 5
Please note these sides may not be distinct. For example, in a 5-12-13 triangle, 12 is a multiple of both 3 and 4.
Let integers $a$, $b$ and $c$ be the lengths of a right triangle's three sides, where $c > b > a$. Show that $\frac{(c-a)(c-b)}{2}$ must be a square number.
Show that $x^4 + y^4 = z^2$ is not solvable in positive integers.
Show that the sides of a Pythagorean triangle in which the hypotenuse exceeds the larger leg by 1 are given by $\frac{n^2-1}{2}$, $n$ and $\frac{n^2+1}{2}$
Show that if the lengths of all the three sides in a right triangle are whole numbers, then radius of its incircle is always a whole number too.
Let $ ABC$ be acute triangle. The circle with diameter $ AB$ intersects $ CA,\, CB$ at $ M,\, N,$ respectively. Draw $ CT\perp AB$ and intersects above circle at $ T$, where $ C$ and $ T$ lie on the same side of $ AB$. $ S$ is a point on $ AN$ such that $ BT = BS$. Prove that $ BS\perp SC$.
The inradius of triangle $ ABC$ is $ 1$ and the side lengths of $ ABC$ are all integers. Prove that triangle $ ABC$ is right-angled.
As shown below, $ABCD$ is a unit square, $\angle{CBE} = 20^\circ$, and $\angle{FBA} = 25^\circ$. Find the circumstance of $\triangle{DEF}$.
Find all the Pythagorean triangles whose two sides are consecutive integers.