Let $a$ and $b$ be relatively prime integers with $a>b>0$ and $\frac{a^3-b^3}{(a-b)^3}$ = $\frac{73}{3}$. What is $a-b$?
The sum of the first $m$ positive odd integers is 212 more than the sum of the first $n$ positive even integers. What is the sum of all possible values of $n$?
Let $a$, $b$, and $c$ be positive integers with $a\ge$ $b\ge$ $c$ such that $a^2-b^2-c^2+ab=2011$ and $a^2+3b^2+3c^2-3ab-2ac-2bc=-1997$.
What is $a$?
What is the sum of all integer solutions to $1<(x-2)^2<25$?
Let $M$ be the product of any four consecutive positive integers. Prove $M+1$ must be a perfect square.
Which of the following equations does NOT have a solution?
The players on a basketball team made some three-point shots, some two-point shots, and some one-point free throws. They scored as many points with two-point shots as with three-point shots. Their number of successful free throws was one more than their number of successful two-point shots. The team's total score was 61 points. How many free throws did they make?
In the eight-term sequence $A,B,C,D,E,F,G,H$, the value of $C$ is 5 and the sum of any three consecutive terms is 30. What is $A+H$?
On Halloween Casper ate $\frac{1}{3}$ of his candies and then gave $2$ candies to his brother. The next day he ate $\frac{1}{3}$ of his remaining candies and then gave $4$ candies to his sister. On the third day he ate his final $8$ candies. How many candies did Casper have at the beginning?
Consider the set of numbers $\{1, 10, 10^2, 10^3, \ldots, 10^{10}\}$. The ratio of the largest element of the set to the sum of the other ten elements of the set is closest to which integer?
What is the product of all the roots of the equation \[\sqrt{5 | x | + 8} = \sqrt{x^2 - 16}.\]
The polynomial $x^3-ax^2+bx-2010$ has three positive integer roots. What is the smallest possible value of $a$?
What is the sum of all the solutions of $x = \left|2x-|60-2x|\right|$?
A high school basketball game between the Raiders and Wildcats was tied at the end of the first quarter. The number of points scored by the Raiders in each of the four quarters formed an increasing geometric sequence, and the number of points scored by the Wildcats in each of the four quarters formed an increasing arithmetic sequence. At the end of the fourth quarter, the Raiders had won by one point. Neither team scored more than $100$ points. What was the total number of points scored by the two teams in the first half?
Let $a > 0$, and let $P(x)$ be a polynomial with integer coefficients such that
$P(1) = P(3) = P(5) = P(7) = a$, and
$P(2) = P(4) = P(6) = P(8) = -a$.
What is the smallest possible value of $a$?
Positive integers $a$, $b$, and $2009$, with $a < b< 2009$, form a geometric sequence with an integer ratio. What is $a$?
Suppose that $P = 2^m$ and $Q = 3^n$. Which of the following is equal to $12^{mn}$ for every pair of integers $(m,n)$?
The figures $F_1$, $F_2$, $F_3$, and $F_4$ shown are the first in a sequence of figures. For $n\ge3$, $F_n$ is constructed from $F_{n - 1}$ by surrounding it with a square and placing one more diamond on each side of the new square than $F_{n - 1}$ had on each side of its outside square. For example, figure $F_3$ has $13$ diamonds. How many diamonds are there in figure $F_{20}$?
Let $a$, $b$, $c$, and $d$ be real numbers with $|a-b|=2$, $|b-c|=3$, and $|c-d|=4$. What is the sum of all possible values of $|a-d|$?
On Monday, Millie puts a quart of seeds, $25\%$ of which are millet, into a bird feeder. On each successive day she adds another quart of the same mix of seeds without removing any seeds that are left. Each day the birds eat only $25\%$ of the millet in the feeder, but they eat all of the other seeds. On which day, just after Millie has placed the seeds, will the birds find that more than half the seeds in the feeder are millet?
When a bucket is two-thirds full of water, the bucket and water weigh $a$ kilograms. When the bucket is one-half full of water the total weight is $b$ kilograms. In terms of $a$ and $b$, what is the total weight in kilograms when the bucket is full of water?
The fraction \[\frac{\left(3^{2008}\right)^2-\left(3^{2006}\right)^2}{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}\] simplifies to which of the following?
A quadratic equation $ax^2 - 2ax + b = 0$ has two real solutions. What is the average of these two solutions?
Suppose that $(u_n)$ is a sequence of real numbers satifying $u_{n+2}=2u_{n+1}+u_n$,
and that $u_3=9$ and $u_6=128$. What is $u_5$?
For each positive integer $n$, the mean of the first $n$ terms of a sequence is $n$. What is the $2008^{\text{th}}$ term of the sequence?