Practice (28)

back to index  |  new

569
Let $f(x)=|2\{x\}-1|$ where $\{x\}$ denotes the fractional part of $x$. The number $n$ is the smallest positive integer such that the equation \[nf(xf(x))=x\] has at least $2012$ real solutions. What is $n$? Note: the fractional part of $x$ is a real number $y=\{x\}$ such that $0\le y<1$ and $x-y$ is an integer.

611
Suppose that $\left|x+y\right|+\left|x-y\right|=2$. What is the maximum possible value of $x^2-6x+y^2$?

612
At a competition with $N$ players, the number of players given elite status is equal to $2^{1+\lfloor \log_{2} (N-1) \rfloor}-N$. Suppose that $19$ players are given elite status. What is the sum of the two smallest possible values of $N$?

635
Let $f(x) = 10^{10x}, g(x) = \log_{10}\left(\frac{x}{10}\right), h_1(x) = g(f(x))$, and $h_n(x) = h_1(h_{n-1}(x))$ for integers $n \geq 2$. What is the sum of the digits of $h_{2011}(1)$?

643
For every $m$ and $k$ integers with $k$ odd, denote by $\left[\frac{m}{k}\right]$ the integer closest to $\frac{m}{k}$. For every odd integer $k$, let $P(k)$ be the probability that \[\left[\frac{n}{k}\right] + \left[\frac{100 - n}{k}\right] = \left[\frac{100}{k}\right]\] for an integer $n$ randomly chosen from the interval $1 \leq n \leq 99!$. What is the minimum possible value of $P(k)$ over the odd integers $k$ in the interval $1 \leq k \leq 99$?

647
If $x<0$, then which of the following must be positive?

654
The solution of the equation $7^{x+7} = 8^x$ can be expressed in the form $x = \log_b 7^7$. What is $b$?

665
What is the minimum value of $\left|x-1\right| + \left|2x-1\right| + \left|3x-1\right| + \cdots + \left|119x - 1 \right|$?

667
Let $f(x) = \log_{10} \left(\sin(\pi x) \cdot \sin(2 \pi x) \cdot \sin (3 \pi x) \cdots \sin(8 \pi x)\right)$. The intersection of the domain of $f(x)$ with the interval $[0,1]$ is a union of $n$ disjoint open intervals. What is $n$?

674
At the beginning of the school year, $50\%$ of all students in Mr. Wells' math class answered "Yes" to the question "Do you love math", and $50\%$ answered "No." At the end of the school year, $70\%$ answered "Yes" and $30\%$ answered "No." Altogether, $x\%$ of the students gave a different answer at the beginning and end of the school year. What is the difference between the maximum and the minimum possible values of $x$?

680
For what value of $x$ does \[\log_{\sqrt{2}}\sqrt{x}+\log_{2}{x}+\log_{4}{x^2}+\log_{8}{x^3}+\log_{16}{x^4}=40?\]

717
The tower function of twos is defined recursively as follows: $T(1) = 2$ and $T(n + 1) = 2^{T(n)}$ for $n\ge1$. Let $A = (T(2009))^{T(2009)}$ and $B = (T(2009))^A$. What is the largest integer $k$ such that \[\underbrace{\log_2\log_2\log_2\ldots\log_2B}_{k\text{ times}}\] is defined?

733
Assume $0 < r < 3$. Below are five equations for $x$. Which equation has the largest solution $x$?

757
What is the area of the region defined by the inequality $|3x-18|+|2y+7|\le3$?

759
The numbers $\log(a^3b^7)$, $\log(a^5b^{12})$, and $\log(a^8b^{15})$ are the first three terms of an arithmetic sequence, and the $12^\text{th}$ term of the sequence is $\log{b^n}$. What is $n$?

782
A circle has a radius of $\log_{10}{(a^2)}$ and a circumference of $\log_{10}{(b^4)}$. What is $\log_{a}{b}$?

791
The sum of the base-$10$ logarithms of the divisors of $10^n$ is $792$. What is $n$?

816
Square $ABCD$ has area $36,$ and $\overline{AB}$ is parallel to the x-axis. Vertices $A,$ $B$, and $C$ are on the graphs of $y = \log_{a}x,$ $y = 2\log_{a}x,$ and $y = 3\log_{a}x,$ respectively. What is $a?$

835
If $a$ is a nonzero integer and $b$ is a positive number such that $ab^2=\log_{10}b$, what is the median of the set $\{0,1,a,b,1\/b\}$?

864
Let $S_1=\{(x,y)|\log_{10}(1+x^2+y^2)\le 1+\log_{10}(x+y)\}$ and $S_2=\{(x,y)|\log_{10}(2+x^2+y^2)\le 2+\log_{10}(x+y)\}$. What is the ratio of the area of $S_2$ to the area of $S_1$?

888
Let $x$ be chosen at random from the interval $(0,1)$. What is the probability that $\lfloor\log_{10}4x\rfloor - \lfloor\log_{10}x\rfloor = 0$? Here $\lfloor x\rfloor$ denotes the greatest integer that is less than or equal to $x$.

914

How many ordered triples of integers $(a,b,c)$, with $a \ge 2$, $b\ge 1$, and $c \ge 0$, satisfy both $\log_a b = c^{2005}$ and $a + b + c = 2005$?


916
Two distinct numbers a and b are chosen randomly from the set $\{2, 2^2, 2^3, ..., 2^{25}\}$. What is the probability that $\mathrm{log}_a b$ is an integer?

935
How many distinct four-tuples $(a,b,c,d)$ of rational numbers are there with \[a\cdot\log_{10}2+b\cdot\log_{10}3+c\cdot\log_{10}5+d\cdot\log_{10}7=2005?\]

941
Let $S$ be the set of ordered triples $(x,y,z)$ of real numbers for which \[\log_{10}(x+y) = z \text{ and } \log_{10}(x^{2}+y^{2}) = z+1.\] There are real numbers $a$ and $b$ such that for all ordered triples $(x,y.z)$ in $S$ we have $x^{3}+y^{3}=a \cdot 10^{3z} + b \cdot 10^{2z}.$ What is the value of $a+b?$