Given 30! ends with some zeros, what is the digit that immediately precedes these zeros?
Compute 3^{2017}\pmod{1000}.
Let integer N=\left\lfloor{(\sqrt{29}+\sqrt{21})^{2020}}\right\rfloor where \lfloor{x}\rfloor denotes the largest integer not exceeding x. Find the last two digits of N.
Let the product of all odd positive integer not greater than 2019 be 2019!!. Find the last three digits of 2019!!.
Find the last 4 digits of 2018^{2019^{2020}}.