The set $G$ is defined by the points $(x,y)$ with integer coordinates, $3\le|x|\le7$, $3\le|y|\le7$. How many squares of side at least $6$ have their four vertices in $G$?
What is the reciprocal of $\frac{1}{2}+\frac{2}{3}$?
Which of the following is equal to the product \[\frac{8}{4}\cdot\frac{12}{8}\cdot\frac{16}{12}\cdot\cdots\cdot\frac{4n+4}{4n}\cdot\cdots\cdot\frac{2008}{2004}?\]
What is the volume of a cube whose surface area is twice that of a cube with volume 1?
Older television screens have an aspect ratio of $4: 3$. That is, the ratio of the width to the height is $4: 3$. The aspect ratio of many movies is not $4: 3$, so they are sometimes shown on a television screen by "letterboxing" - darkening strips of equal height at the top and bottom of the screen, as shown. Suppose a movie has an aspect ratio of $2: 1$ and is shown on an older television screen with a $27$-inch diagonal. What is the height, in inches, of each darkened strip?
Three cubes are each formed from the pattern shown. They are then stacked on a table one on top of another so that the $13$ visible numbers have the greatest possible sum. What is that sum?
A function $f$ has domain $[0,2]$ and range $[0,1]$. (The notation $[a,b]$ denotes $\{x:a \le x \le b \}$.) What are the domain and range, respectively, of the function $g$ defined by $g(x)=1-f(x+1)$?
What is the area of the region defined by the inequality $|3x-18|+|2y+7|\le3$?
The numbers $\log(a^3b^7)$, $\log(a^5b^{12})$, and $\log(a^8b^{15})$ are the first three terms of an arithmetic sequence, and the $12^\text{th}$ term of the sequence is $\log{b^n}$. What is $n$?
Let $a_1,a_2,\ldots$ be a sequence determined by the rule $a_n=a_{n-1}/2$ if $a_{n-1}$ is even and $a_n=3a_{n-1}+1$ if $a_{n-1}$ is odd. For how many positive integers $a_1 \le 2008$ is it true that $a_1$ is less than each of $a_2$, $a_3$, and $a_4$?
Triangle $ABC$, with sides of length $5$, $6$, and $7$, has one vertex on the positive $x$-axis, one on the positive $y$-axis, and one on the positive $z$-axis. Let $O$ be the origin. What is the volume of tetrahedron $OABC$?
What is the coefficient of $x^{28}$ in the expansion of the following polynomial? \[\left(1 + x + x^2 + \cdots + x^{27}\right)\left(1 + x + x^2 + \cdots + x^{14}\right)^2,\]
Triangle $ABC$ has $AC=3$, $BC=4$, and $AB=5$. Point $D$ is on $\overline{AB}$, and $\overline{CD}$ bisects the right angle. The inscribed circles of $\triangle ADC$ and $\triangle BCD$ have radii $r_a$ and $r_b$, respectively. What is $r_a/r_b$?
A permutation $(a_1,a_2,a_3,a_4,a_5)$ of $(1,2,3,4,5)$ is heavy-tailed if $a_1 + a_2 < a_4 + a_5$. What is the number of heavy-tailed permutations?
A round table has radius $4$. Six rectangular place mats are placed on the table. Each place mat has width $1$ and length $x$ as shown. They are positioned so that each mat has two corners on the edge of the table, these two corners being end points of the same side of length $x$. Further, the mats are positioned so that the inner corners each touch an inner corner of an adjacent mat. What is $x$?
The solutions of the equation $z^4+4z^3i-6z^2-4zi-i=0$ are the vertices of a convex polygon in the complex plane. What is the area of the polygon?
Triangle $ABC$ has $\angle C = 60^{\circ}$ and $BC = 4$. Point $D$ is the midpoint of $BC$. What is the largest possible value of $\tan{\angle BAD}$?
A sequence $(a_1,b_1)$, $(a_2,b_2)$, $(a_3,b_3)$, $\ldots$ of points in the coordinate plane satisfies
$(a_{n + 1}, b_{n + 1}) = (\sqrt {3}a_n - b_n, \sqrt {3}b_n + a_n)$ for $n = 1,2,3,\ldots$.
Suppose that $(a_{100},b_{100}) = (2,4)$. What is $a_1 + b_1$?
A basketball player made $5$ baskets during a game. Each basket was worth either $2$ or $3$ points. How many different numbers could represent the total points scored by the player?
A $4\times 4$ block of calendar dates is shown. The order of the numbers in the second row is to be reversed. Then the order of the numbers in the fourth row is to be reversed. Finally, the numbers on each diagonal are to be added. What will be the positive difference between the two diagonal sums?
A semipro baseball league has teams with $21$ players each. League rules state that a player must be paid at least $15,000$ dollars, and that the total of all players' salaries for each team cannot exceed $700,000$ dollars. What is the maximum possiblle salary, in dollars, for a single player?
On circle $O$, points $C$ and $D$ are on the same side of diameter $\overline{AB}$, $\angle AOC = 30^\circ$, and $\angle DOB = 45^\circ$. What is the ratio of the area of the smaller sector $COD$ to the area of the circle?
A class collects $50$ dollars to buy flowers for a classmate who is in the hospital. Roses cost $3$ dollars each, and carnations cost $2$ dollars each. No other flowers are to be used. How many different bouquets could be purchased for exactly $50$ dollars?
Postman Pete has a pedometer to count his steps. The pedometer records up to $99999$ steps, then flips over to $00000$ on the next step. Pete plans to determine his mileage for a year. On January $1$ Pete sets the pedometer to $00000$. During the year, the pedometer flips from $99999$ to $00000$ forty-four times. On December $31$ the pedometer reads $50000$. Pete takes $1800$ steps per mile. Which of the following is closest to the number of miles Pete walked during the year?
For real numbers $a$ and $b$, define $a\$ b = (a - b)^2$. What is $(x - y)^2\$(y - x)^2$?