Quadrilateral $ABCD$ is inscribed in circle $O$ and has side lengths $AB=3, BC=2, CD=6$, and $DA=8$. Let $X$ and $Y$ be points on
$\overline{BD}$ such that $\frac{DX}{BD} = \frac{1}{4}$ and $\frac{BY}{BD} = \frac{11}{36}$. Let $E$ be the intersection of line $AX$ and the line through $Y$ parallel to $\overline{AD}$. Let $F$ be the intersection of line $CX$ and the line through $E$ parallel to $\overline{AC}$. Let $G$ be the point on circle $O$ other than $C$ that lies on line $CX$. What is $XF\cdot XG$?
The vertices $V$ of a centrally symmetric hexagon in the complex plane are given by \[V=\left\{ \sqrt{2}i,-\sqrt{2}i, \frac{1}{\sqrt{8}}(1+i),\frac{1}{\sqrt{8}}(-1+i),\frac{1}{\sqrt{8}}(1-i),\frac{1}{\sqrt{8}}(-1-i) \right\}.\] For each $j$, $1\leq j\leq 12$, an element $z_j$ is chosen from $V$ at random, independently of the other choices. Let $P={\prod}_{j=1}^{12}z_j$ be the product of the $12$ numbers selected. What is the probability that $P=-1$?
If $17!=355687ab8096000$ where $a$ and $b$ are two missing single digits. Find $a$ and $b$.
We define the Fibonaccie numbers by $F_0=0$, $F_1=1$, and $F_n=F_{n-1}+F_{n}$. Find the greatest common divisor $(F_{100}, F_{99})$, and $(F_{100}, F_{96})$.
Show that neither $385^{97}$ nor $366^{17}$ can be expressed as the sum of cubes of some consecutive integers.
Mary thought of a positive two-digit number. She multiplied it by $3$ and added $11$. Then she switched the digits of the result, obtaining a number between $71$ and $75$, inclusive. What was Mary's number?
Sofia ran $5$ laps around the $400$-meter track at her school. For each lap, she ran the first $100$ meters at an average speed of $4$ meters per second and the remaining $300$ meters at an average speed of $5$ meters per second. How much time did Sofia take running the $5$ laps?
Camilla had twice as many blueberry jelly beans as cherry jelly beans. After eating $10$ pieces of each kind, she now has three times as many blueberry jelly beans as cherry jelly beans. How many blueberry jelly beans did she originally have?
What is the largest number of solid $2\text{ in.}$ by $2\text{ in.}$ by $1\text{ in.}$ blocks that can fit in a $3\text{ in.}$ by $2\text{ in.}$ by $3\text{ in.}$ box?
Points $A(11, 9)$ and $B(2, -3)$ are vertices of $\triangle ABC$ with $AB=AC$. The altitude from $A$ meets the opposite side at $D(-1, 3)$. What are the coordinates of point $C$?
A radio program has a quiz consisting of $3$ multiple-choice questions, each with $3$ choices. A contestant wins if he or she gets $2$ or more of the questions right. The contestant answers randomly to each question. What is the probability of winning?
The lines with equations $ax-2y=c$ and $2x+by=-c$ are perpendicular and intersect at $(1, -5)$. What is $c$?
Elmer's new car gives $50\%$ percent better fuel efficiency. However, the new car uses diesel fuel, which is $20\%$ more expensive per liter than the gasoline the old car used. By what percent will Elmer save money if he uses his new car instead of his old car for a long trip?
There are $20$ students participating in an after-school program offering classes in yoga, bridge, and painting. Each student must take at least one of these three classes, but may take two or all three. There are $10$ students taking yoga, $13$ taking bridge, and $9$ taking painting. There are $9$ students taking at least two classes. How many students are taking all three classes?
An integer $N$ is selected at random in the range $1\leq N \leq 2020$. What is the probability that the remainder when $N^{16}$ is divided by $5$ is $1$?
Rectangle $ABCD$ has $AB=3$ and $BC=4$. Point $E$ is the foot of the perpendicular from $B$ to diagonal $\overline{AC}$. What is the area of $\triangle AED$?
How many of the base-ten numerals for the positive integers less than or equal to $2017$ contain the digit $0$?
In $\triangle ABC$, $AB=6$, $AC=8$, $BC=10$, and $D$ is the midpoint of $\overline{BC}$. What is the sum of the radii of the circles inscibed in $\triangle ADB$ and $\triangle ADC$?
The vertices of an equilateral triangle lie on the hyperbola $xy=1$, and a vertex of this hyperbola is the centroid of the triangle. What is the square of the area of the triangle?
A set of $n$ people participate in an online video basketball tournament. Each person may be a member of any number of $5$-player teams, but no teams may have exactly the same $5$ members. The site statistics show a curious fact: The average, over all subsets of size $9$ of the set of $n$ participants, of the number of complete teams whose members are among those 9 people is equal to the reciprocal of the average, over all subsets of size $8$ of the set of $n$ participants, of the number of complete teams whose members are among those $8$ people. How many values $n$, $9 \leq n \leq 2017$, can be the number of participants?
Quadrilateral $ABCD$ has right angles at $B$ and $C$, $\triangle ABC \sim \triangle BCD$, and $AB > BC$. There is a point $E$ in the interior of $ABCD$ such that $\triangle ABC \sim \triangle CEB$ and the area of $\triangle AED$ is $17$ times the area of $\triangle CEB$. What is $\frac{AB}{BC}$?
The graph of $y=f(x)$, where $f(x)$ is a polynomial of degree $3$, contains points $A(2,4)$, $B(3,9)$, and $C(4,16)$. Lines $AB$, $AC$, and $BC$ intersect the graph again at points $D$, $E$, and $F$, respectively, and the sum of the $x$-coordinates of $D$, $E$, and $F$ is 24. What is $f(0)$?
Abby, Bernardo, Carl, and Debra play a game in which each of them starts with four coins. The game consists of four rounds. In each round, four balls are placed in an urn---one green, one red, and two white. The players each draw a ball at random without replacement. Whoever gets the green ball gives one coin to whoever gets the red ball. What is the probability that, at the end of the fourth round, each of the players has four coins?
Last year Isabella took $7$ math tests and received $7$ different scores, each an integer between $91$ and $100$, inclusive. After each test she noticed that the average of her test scores was an integer. Her score on the seventh test was $95$. What was her score on the sixth test?
Real numbers $x$ and $y$ are chosen independently and uniformly at random from the interval $(0,1)$. What is the probability that $\lfloor\log_2x\rfloor=\lfloor\log_2y\rfloor$, where $\lfloor r\rfloor$ denotes the greatest integer less than or equal to the real number $r$ ?