Three congruent isosceles triangles are constructed with their bases on the sides of an equilateral triangle of side length $1$. The sum of the areas of the three isosceles triangles is the same as the area of the equilateral triangle. What is the length of one of the two congruent sides of one of the isosceles triangles?
Two circles intersect at points $A$ and $B$. The minor arcs $AB$ measure $30^\circ$ on one circle and $60^\circ$ on the other circle. What is the ratio of the area of the larger circle to the area of the smaller circle?
A fancy bed and breakfast inn has $5$ rooms, each with a distinctive color-coded decor. One day $5$ friends arrive to spend the night. There are no other guests that night. The friends can room in any combination they wish, but with no more than $2$ friends per room. In how many ways can the innkeeper assign the guests to the rooms?
Let $a < b < c$ be three integers such that $a,b,c$ is an arithmetic progression and $a,c,b$ is a geometric progression. What is the smallest possible value of $c$?
A five-digit palindrome is a positive integer with respective digits $abcba$, where $a$ is non-zero. Let $S$ be the sum of all five-digit palindromes. What is the sum of the digits of $S$?
A rectangle of perimeter 22 cm is inscribed in a circle of area $16\pi$ $cm^2$. What is the area of the rectangle? Express your answer as a decimal to the nearest tenth.
The units and tens digits of one two-digit integer are the tens and units digits of another two-digit integer, respectively. If the product of the two integers is $4930$, what is their sum?
A $4\times 4\times h$ rectangular box contains a sphere of radius $2$ and eight smaller spheres of radius $1$. The smaller spheres are each tangent to three sides of the box, and the larger sphere is tangent to each of the smaller spheres. What is $h$?
Octavius has eight identical blue socks, six identical red socks, four identical black socks and two identical orange socks in his drawer. If he randomly selects
two socks from his drawer, what is the probability that they will be the same color? Express your answer as a common fraction.
Iniki has large, medium and small metal bars. The large bars each weigh 8 kg. The medium bars each weigh 6 kg. The small bars each weigh 3 kg. Iron, nickel and lead are present in the ratio 4:1:3 in each large bar, 2:1:3 in each medium bar and 1:1:1 in each small bar. If Iniki wants to melt together a combination of bars to make an alloy that contains 40 kg of iron, 20 kg of nickel and 40 kg of lead, how many small bars will she have to use?
The domain of the function $f(x)=\log_{\frac12}(\log_4(\log_{\frac14}(\log_{16}(\log_{\frac1{16}}x))))$ is an interval of length $\tfrac mn$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?
There are exactly $N$ distinct rational numbers $k$ such that $|k|<200$ and \[5x^2+kx+12=0\] has at least one integer solution for $x$. What is $N$?
In $\triangle BAC$, $\angle BAC=40^\circ$, $AB=10$, and $AC=6$. Points $D$ and $E$ lie on $\overline{AB}$ and $\overline{AC}$ respectively. What is the minimum possible value of $BE+DE+CD$?
For every real number $x$, let $\lfloor x\rfloor$ denote the greatest integer not exceeding $x$, and let \[f(x)=\lfloor x\rfloor(2014^{x-\lfloor x\rfloor}-1).\] The set of all numbers $x$ such that $1\leq x<2014$ and $f(x)\leq 1$ is a union of disjoint intervals. What is the sum of the lengths of those intervals?
The fraction \[\dfrac1{99^2}=0.\overline{b_{n-1}b_{n-2}\ldots b_2b_1b_0},\] where $n$ is the length of the period of the repeating decimal expansion. What is the sum $b_0+b_1+\cdots+b_{n-1}$?
If $x +\frac{1}{x}= 3$, what is the value of $x^4+\frac{1}{x^4}$?
Let $f_0(x)=x+|x-100|-|x+100|$, and for $n\geq 1$, let $f_n(x)=|f_{n-1}(x)|-1$. For how many values of $x$ is $f_{100}(x)=0$?
The parabola $P$ has focus $(0,0)$ and goes through the points $(4,3)$ and $(-4,-3)$. For how many points $(x,y)\in P$ with integer coordinates is it true that $|4x+3y|\leq 1000$?
Points $C$ and $D$ are chosen on the sides of right triangle $ABE$, as shown, such that the four segments $AB$, $BC$, $CD$ and $DE$ each have length 1 inch. What is the measure of angle $BAE$, in degrees? Express your answer as a decimal to the nearest tenth.
Orvin went to the store with just enough money to buy $30$ balloons. When he arrived he discovered that the store had a special sale on balloons: buy $1$ balloon at the regular price and get a second at $\frac{1}{3}$ off the regular price. What is the greatest number of balloons Orvin could buy?
Randy drove the first third of his trip on a gravel road, the next $20$ miles on pavement, and the remaining one-fifth on a dirt road. In miles, how long was Randy's trip?
A restaurant sells three sizes of drinks: small for \$1.20, medium for \$1.30 and large for \$1.80. Each person at a table of ten ordered one drink, for a total cost of \$14.90, before sales tax. How many people ordered a large drink?
Doug constructs a square window using $8$ equal-size panes of glass, as shown. The ratio of the height to width for each pane is $5 : 2$, and the borders around and between the panes are $2$ inches wide. In inches, what is the side length of the square window?
Each of the 25 cells in a five-by-five grid of squares is filled with a 0, 1 or 2 in such a way that the numbers written in neighboring cells differ from the number in that cell by 1. Two cells are considered neighbors if they share a side. How many different arrangements are possible?
Ed and Ann both have lemonade with their lunch. Ed orders the regular size. Ann gets the large lemonade, which is 50% more than the regular. After both consume $\frac{3}{4}$ of their drinks, Ann gives Ed a third of what she has left, and 2 additional ounces. When they finish their lemonades they realize that they both drank the same amount. How many ounces of lemonade did they drink together?