Practice (TheColoringMethod)

back to index  |  new

Prove that there is a constant $c>0$ with the following property: If $a, b, n$ are positive integers such that $\gcd(a+i, b+j)>1$ for all $i, j\in\{0, 1, \ldots n\}$, then\[\min\{a, b\}>c^n\cdot n^{\frac{n}{2}}.\]

In triangle $ABC$, points $P$, $Q$, $R$ lie on sides $BC$, $CA$, $AB$ respectively. Let $\omega_A$, $\omega_B$, $\omega_C$ denote the circumcircles of triangles $AQR$, $BRP$, $CPQ$, respectively. Given the fact that segment $AP$ intersects $\omega_A$, $\omega_B$, $\omega_C$ again at $X$, $Y$, $Z$, respectively, prove that $YX/XZ=BP/PC$.

For a positive integer $n\geq 3$ plot $n$ equally spaced points around a circle. Label one of them $A$, and place a marker at $A$. One may move the marker forward in a clockwise direction to either the next point or the point after that. Hence there are a total of $2n$ distinct moves available; two from each point. Let $a_n$ count the number of ways to advance around the circle exactly twice, beginning and ending at $A$, without repeating a move. Prove that $a_{n-1}+a_n=2^n$ for all $n\geq 4$.

Let $n$ be a positive integer. There are $\tfrac{n(n+1)}{2}$ marks, each with a black side and a white side, arranged into an equilateral triangle, with the biggest row containing $n$ marks. Initially, each mark has the black side up. An operation is to choose a line parallel to the sides of the triangle, and flipping all the marks on that line. A configuration is called admissible if it can be obtained from the initial configuration by performing a finite number of operations. For each admissible configuration $C$, let $f(C)$ denote the smallest number of operations required to obtain $C$ from the initial configuration. Find the maximum value of $f(C)$, where $C$ varies over all admissible configurations.

Find all real numbers $x,y,z\geq 1$ satisfying \[\min(\sqrt{x+xyz},\sqrt{y+xyz},\sqrt{z+xyz})=\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}.\]

Given positive integers $m$ and $n$, prove that there is a positive integer $c$ such that the numbers $cm$ and $cn$ have the same number of occurrences of each non-zero digit when written in base ten.

Let $ABC$ be a triangle. Find all points $P$ on segment $BC$ satisfying the following property: If $X$ and $Y$ are the intersections of line $PA$ with the common external tangent lines of the circumcircles of triangles $PAB$ and $PAC$, then \[\left(\frac{PA}{XY}\right)^2+\frac{PB\cdot PC}{AB\cdot AC}=1.\]

Find all integers $n \geq 3$ such that among any $n$ positive real numbers $a_1, a_2, \hdots, a_n$ with $\text{max}(a_1,a_2,\hdots,a_n) \leq n \cdot \text{min}(a_1,a_2,\hdots,a_n)$, there exist three that are the side lengths of an acute triangle.

A circle is divided into $432$ congruent arcs by $432$ points. The points are colored in four colors such that some $108$ points are colored Red, some $108$ points are colored Green, some $108$ points are colored Blue, and the remaining $108$ points are colored Yellow. Prove that one can choose three points of each color in such a way that the four triangles formed by the chosen points of the same color are congruent.

Determine which integers $n > 1$ have the property that there exists an infinite sequence $a_1, a_2, a_3, \ldots$ of nonzero integers such that the equality \[a_k+2a_{2k}+\ldots+na_{nk}=0\]holds for every positive integer $k$.

Find all functions $f:\mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ (where $\mathbb{Z}^+$ is the set of positive integers) such that $f(n!) = f(n)!$ for all positive integers $n$ and such that $m-n$ divides $f(m) - f(n)$ for all distinct positive integers $m, n$.

Let $P$ be a point in the plane of $\triangle ABC$, and $\gamma$ a line passing through $P$. Let $A', B', C'$ be the points where the reflections of lines $PA, PB, PC$ with respect to $\gamma$ intersect lines $BC, AC, AB$ respectively. Prove that $A', B', C'$ are collinear.

For integer $n\geq2$, let $x_1, x_2, \ldots, x_n$ be real numbers satisfying \[x_1+x_2+\ldots+x_n=0, \qquad \text{and}\qquad x_1^2+x_2^2+\ldots+x_n^2=1.\]For each subset $A\subseteq\{1, 2, \ldots, n\}$, define\[S_A=\sum_{i\in A}x_i.\](If $A$ is the empty set, then $S_A=0$.) Prove that for any positive number $\lambda$, the number of sets $A$ satisfying $S_A\geq\lambda$ is at most $2^{n-3}/\lambda^2$. For which choices of $x_1, x_2, \ldots, x_n, \lambda$ does equality hold?

Let $a, b, c$ be positive real numbers such that $a^2+b^2+c^2+(a+b+c)^2\leq4$. Prove that \[\frac{ab+1}{(a+b)^2}+\frac{bc+1}{(b+c)^2}+\frac{ca+1}{(c+a)^2}\geq 3.\]

An integer is assigned to each vertex of a regular pentagon so that the sum of the five integers is 2011. A turn of a solitaire game consists of subtracting an integer $m$ from each of the integers at two neighboring vertices and adding $2m$ to the opposite vertex, which is not adjacent to either of the first two vertices. (The amount $m$ and the vertices chosen can vary from turn to turn.) The game is won at a certain vertex if, after some number of turns, that vertex has the number 2011 and the other four vertices have the number 0. Prove that for any choice of the initial integers, there is exactly one vertex at which the game can be won.

In hexagon $ABCDEF$, which is nonconvex but not self-intersecting, no pair of opposite sides are parallel. The internal angles satisfy $\angle A=3\angle D$, $\angle C=3\angle F$, and $\angle E=3\angle B$. Furthermore $AB=DE$, $BC=EF$, and $CD=FA$. Prove that diagonals $\overline{AD}$, $\overline{BE}$, and $\overline{CF}$ are concurrent.

Consider the assertion that for each positive integer $n\geq2$, the remainder upon dividing $2^{2^n}$ by $2^n-1$ is a power of $4$. Either prove the assertion or find (with proof) a counterexample.

Let $P$ be a given point inside quadrilateral $ABCD$. Points $Q_1$ and $Q_2$ are located within $ABCD$ such that \[\angle Q_1BC=\angle ABP,\quad\angle Q_1CB=\angle DCP,\quad\angle Q_2AD=\angle BAP,\quad\angle Q_2DA=\angle CDP.\] Prove that $\overline{Q_1Q_2}\parallel\overline{AB}$ if and only if $\overline{Q_1Q_2}\parallel\overline{CD}$.

Let $A$ be a set with $|A|=225$, meaning that $A$ has 225 elements. Suppose further that there are eleven subsets $A_1, \ldots, A_{11}$ of $A$ such that $|A_i|=45$ for $1\leq i\leq11$ and $|A_i\cap A_j|=9$ for $1\leq i

Let $AXYZB$ be a convex pentagon inscribed in a semicircle of diameter $AB$. Denote by $P$, $Q$, $R$, $S$ the feet of the perpendiculars from $Y$ onto lines $AX$, $BX$, $AZ$, $BZ$, respectively. Prove that the acute angle formed by lines $PQ$ and $RS$ is half the size of $\angle XOZ$, where $O$ is the midpoint of segment $AB$.

There are $n$ students standing in a circle, one behind the other. The students have heights $h_1

The 2010 positive numbers $a_1, a_2, \ldots , a_{2010}$ satisfy the inequality $a_ia_j \le i+j$ for all distinct indices $i, j$. Determine, with proof, the largest possible value of the product $a_1a_2\ldots a_{2010}$.

Let $ABC$ be a triangle with $\angle A = 90^{\circ}$. Points $D$ and $E$ lie on sides $AC$ and $AB$, respectively, such that $\angle ABD = \angle DBC$ and $\angle ACE = \angle ECB$. Segments $BD$ and $CE$ meet at $I$. Determine whether or not it is possible for segments $AB$, $AC$, $BI$, $ID$, $CI$, $IE$ to all have integer lengths.

Let $q = \frac{3p-5}{2}$ where $p$ is an odd prime, and let\[ S_q = \frac{1}{2\cdot 3 \cdot 4} + \frac{1}{5\cdot 6 \cdot 7} + \cdots + \frac{1}{q(q+1)(q+2)} \]Prove that if $\frac{1}{p}-2S_q = \frac{m}{n}$ for integers $m$ and $n$, then $m - n$ is divisible by $p$.

A blackboard contains 68 pairs of nonzero integers. Suppose that for each positive integer $k$ at most one of the pairs $(k, k)$ and $(-k, -k)$ is written on the blackboard. A student erases some of the 136 integers, subject to the condition that no two erased integers may add to 0. The student then scores one point for each of the 68 pairs in which at least one integer is erased. Determine, with proof, the largest number $N$ of points that the student can guarantee to score regardless of which 68 pairs have been written on the board.