Practice (EndingDigits,TheDivideByNineMethod,MODBasic)

back to index  |  new

880
The parabola $y=ax^2+bx+c$ has vertex $(p,p)$ and $y$-intercept $(0,-p)$, where $p\ne 0$. What is $b$?

881
Rhombus $ABCD$ is similar to rhombus $BFDE$. The area of rhombus $ABCD$ is 24, and $\angle BAD = 60^\circ$. What is the area of rhombus $BFDE$?


882
Elmo makes $N$ sandwiches for a fundraiser. For each sandwich he uses $B$ globs of peanut butter at $4$ cents per glob and $J$ blobs of jam at $5$ cents per glob. The cost of the peanut butter and jam to make all the sandwiches is $2.53$. Assume that $B$, $J$ and $N$ are all positive integers with $N>1$. What is the cost of the jam Elmo uses to make the sandwiches?

883
Circles with centers $O$ and $P$ have radii 2 and 4, respectively, and are externally tangent. Points $A$ and $B$ are on the circle centered at $O$, and points $C$ and $D$ are on the circle centered at $P$, such that $\overline{AD}$ and $\overline{BC}$ are common external tangents to the circles. What is the area of hexagon $AOBCPD$?


884
Regular hexagon $ABCDEF$ has vertices $A$ and $C$ at $(0,0)$ and $(7,1)$, respectively. What is its area?

885
For a particular peculiar pair of dice, the probabilities of rolling $1$, $2$, $3$, $4$, $5$ and $6$ on each die are in the ratio $1:2:3:4:5:6$. What is the probability of rolling a total of $7$ on the two dice?

886
An object in the plane moves from one lattice point to another. At each step, the object may move one unit to the right, one unit to the left, one unit up, or one unit down. If the object starts at the origin and takes a ten-step path, how many different points could be the final point?

888
Let $x$ be chosen at random from the interval $(0,1)$. What is the probability that $\lfloor\log_{10}4x\rfloor - \lfloor\log_{10}x\rfloor = 0$? Here $\lfloor x\rfloor$ denotes the greatest integer that is less than or equal to $x$.

889
Rectangle $ABCD$ has area $2006$. An ellipse with area $2006\pi$ passes through $A$ and $C$ and has foci at $B$ and $D$. What is the perimeter of the rectangle? (The area of an ellipse is $ab\pi$ where $2a$ and $2b$ are the lengths of the axes.)

890
Suppose $a$, $b$ and $c$ are positive integers with $a+b+c=2006$, and $a!b!c!=m\cdot 10^n$, where $m$ and $n$ are integers and $m$ is not divisible by $10$. What is the smallest possible value of $n$?

891
Isosceles $\triangle ABC$ has a right angle at $C$. Point $P$ is inside $\triangle ABC$, such that $PA=11$, $PB=7$, and $PC=6$. Legs $\overline{AC}$ and $\overline{BC}$ have length $s=\sqrt{a+b\sqrt{2}}$, where $a$ and $b$ are positive integers. What is $a+b$?


892
Let $S$ be the set of all point $(x,y)$ in the coordinate plane such that $0 \le x \le \frac{\pi}{2}$ and $0 \le y \le \frac{\pi}{2}$. What is the area of the subset of $S$ for which \[\sin^2x-\sin x \sin y + \sin^2y \le \frac34?\]

893
A sequence $a_1,a_2,\dots$ of non-negative integers is defined by the rule $a_{n+2}=|a_{n+1}-a_n|$ for $n\geq 1$. If $a_1=999$, $a_2<999$ and $a_{2006}=1$, how many different values of $a_2$ are possible?

894
Two is $10 \%$ of $x$ and $20 \%$ of $y$. What is $x - y$?

896
A rectangle with diagonal length $x$ is twice as long as it is wide. What is the area of the rectangle?

897
A store normally sells windows at $100$ each. This week the store is offering one free window for each purchase of four. Dave needs seven windows and Doug needs eight windows. How much will they save if they purchase the windows together rather than separately?

898
The average (mean) of 20 numbers is 30, and the average of 30 other numbers is 20. What is the average of all 50 numbers?

899
Josh and Mike live 13 miles apart. Yesterday, Josh started to ride his bicycle toward Mike's house. A little later Mike started to ride his bicycle toward Josh's house. When they met, Josh had ridden for twice the length of time as Mike and at four-fifths of Mike's rate. How many miles had Mike ridden when they met?

900
Square $EFGH$ is inside the square $ABCD$ so that each side of $EFGH$ can be extended to pass through a vertex of $ABCD$. Square $ABCD$ has side length $\sqrt {50}$ and $BE = 1$. What is the area of the inner square $EFGH$?

901
Let $A,M$, and $C$ be digits with \[(100A+10M+C)(A+M+C) = 2005\] What is $A$?

902
There are two values of $a$ for which the equation $4x^2 + ax + 8x + 9 = 0$ has only one solution for $x$. What is the sum of these values of $a$?

905
A line passes through $A\ (1,1)$ and $B\ (100,1000)$. How many other points with integer coordinates are on the line and strictly between $A$ and $B$?

906
The regular 5-point star $ABCDE$ is drawn and in each vertex, there is a number. Each $A,B,C,D,$ and $E$ are chosen such that all 5 of them came from set $\{3,5,6,7,9\}$. Each letter is a different number (so one possible way is $A = 3, B = 5, C = 6, D = 7, E = 9$). Let $AB$ be the sum of the numbers on $A$ and $B$, and so forth. If $AB, BC, CD, DE,$ and $EA$ form an arithmetic sequence (not necessarily in increasing order), find the value of $CD$.

907
On a standard die one of the dots is removed at random with each dot equally likely to be chosen. The die is then rolled. What is the probability that the top face has an odd number of dots?

908
Let $\overline{AB}$ be a diameter of a circle and $C$ be a point on $\overline{AB}$ with $2 \cdot AC = BC$. Let $D$ and $E$ be points on the circle such that $\overline{DC} \perp \overline{AB}$ and $\overline{DE}$ is a second diameter. What is the ratio of the area of $\triangle DCE$ to the area of $\triangle ABD$?