Practice (EndingDigits,TheDivideByNineMethod,MODBasic)

back to index  |  new

607
Suppose $a$ and $b$ are single-digit positive integers chosen independently and at random. What is the probability that the point $(a,b)$ lies above the parabola $y=ax^2-bx$?

608
The circular base of a hemisphere of radius $2$ rests on the base of a square pyramid of height $6$. The hemisphere is tangent to the other four faces of the pyramid. What is the edge-length of the base of the pyramid?

610
Circles with radii $1$, $2$, and $3$ are mutually externally tangent. What is the area of the triangle determined by the points of tangency?

611
Suppose that $\left|x+y\right|+\left|x-y\right|=2$. What is the maximum possible value of $x^2-6x+y^2$?

612
At a competition with $N$ players, the number of players given elite status is equal to $2^{1+\lfloor \log_{2} (N-1) \rfloor}-N$. Suppose that $19$ players are given elite status. What is the sum of the two smallest possible values of $N$?

613
Let $f(x)=ax^2+bx+c$, where $a$, $b$, and $c$ are integers. Suppose that $f(1)=0$, $50 < f(7) < 60$, $70 < f(8) < 80$, $5000k < f(100) < 5000(k+1)$ for some integer $k$. What is $k$?

614
Let $f_{1}(x)=\sqrt{1-x}$, and for integers $n \geq 2$, let $f_{n}(x)=f_{n-1}(\sqrt{n^2 - x})$. If $N$ is the largest value of $n$ for which the domain of $f_{n}$ is nonempty, the domain of $f_{N}$ is $[c]$. What is $N+c$?

615
Let $R$ be a square region and $n \geq 4$ an integer. A point $X$ in the interior of $R$ is called $n$-ray partitional if there are $n$ rays emanating from $X$ that divide $R$ into $n$ triangles of equal area. How many points are $100$-ray partitional but not $60$-ray partitional?

616
Let $f(z)= \frac{z+a}{z+b}$ and $g(z)=f(f(z))$, where $a$ and $b$ are complex numbers. Suppose that $\left| a \right| = 1$ and $g(g(z))=z$ for all $z$ for which $g(g(z))$ is defined. What is the difference between the largest and smallest possible values of $\left| b \right|$?

617
Consider all quadrilaterals $ABCD$ such that $AB=14$, $BC=9$, $CD=7$, and $DA=12$. What is the radius of the largest possible circle that fits inside or on the boundary of such a quadrilateral?

618
Triangle $ABC$ has $\angle BAC = 60^{\circ}$, $\angle CBA \leq 90^{\circ}$, $BC=1$, and $AC \geq AB$. Let $H$, $I$, and $O$ be the orthocenter, incenter, and circumcenter of $\triangle ABC$, respectively. Assume that the area of pentagon $BCOIH$ is the maximum possible. What is $\angle CBA$?

619
What is $\frac{2+4+6}{1+3+5} - \frac{1+3+5}{2+4+6}?$

620
Josanna's test scores to date are $90, 80, 70, 60,$ and $85.$ Her goal is to raise her test average at least $3$ points with her next test. What is the minimum test score she would need to accomplish this goal?

621
LeRoy and Bernardo went on a week-long trip together and agreed to share the costs equally. Over the week, each of them paid for various joint expenses such as gasoline and car rental. At the end of the trip it turned out that LeRoy had paid $A$ dollars and Bernardo had paid $B$ dollars, where $A < B.$ How many dollars must LeRoy give to Bernardo so that they share the costs equally?

622
In multiplying two positive integers $a$ and $b$, Ron reversed the digits of the two-digit number $a$. His erroneous product was $161.$ What is the correct value of the product of $a$ and $b$?

623
Let $N$ be the second smallest positive integer that is divisible by every positive integer less than $7$. What is the sum of the digits of $N$?

624
Two lines tangents to a circle are drawn from a point $A$. The points of contact $B$ and $C$ divide the circle into arcs with lengths in the ratio $2 : 3$. What is the degree measure of $\angle{BAC}$?

625
Let $x$ and $y$ be two-digit positive integers with mean $60$. What is the maximum value of the ratio $\frac{x}{y}$?

626
Keiko walks once around a track at exactly the same constant speed every day. The sides of the track are straight, and the ends are semicircles. The track has width $6$ meters, and it takes her $36$ seconds longer to walk around the outside edge of the track than around the inside edge. What is Keiko's speed in meters per second?

627
Two real numbers are selected independently and at random from the interval $[-20,10]$. What is the probability that the product of those numbers is greater than zero?

628
Rectangle $ABCD$ has $AB=6$ and $BC=3$. Point $M$ is chosen on side $AB$ so that $\angle AMD=\angle CMD$. What is the degree measure of $\angle AMD$?

629
A frog located at $(x,y)$, with both $x$ and $y$ integers, makes successive jumps of length $5$ and always lands on points with integer coordinates. Suppose that the frog starts at $(0,0)$ and ends at $(1,0)$. What is the smallest possible number of jumps the frog makes?

630
A dart board is a regular octagon divided into regions as shown below. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is the probability that the dart lands within the center square?


631
Brian writes down four integers $w > x > y > z$ whose sum is $44$. The pairwise positive differences of these numbers are $1, 3, 4, 5, 6$ and $9$. What is the sum of the possible values of $w$?

632
A segment through the focus $F$ of a parabola with vertex $V$ is perpendicular to $\overline{FV}$ and intersects the parabola in points $A$ and $B$. What is $\cos\left(\angle AVB\right)$?