Practice (EndingDigits,TheDivideByNineMethod,MODBasic)

back to index  |  new

George walks $1$ mile to school. He leaves home at the same time each day, walks at a steady speed of $3$ miles per hour, and arrives just as school begins. Today he was distracted by the pleasant weather and walked the first $\frac{1}{2}$ mile at a speed of only $2$ miles per hour. At how many miles per hour must George run the last $\frac{1}{2}$ mile in order to arrive just as school begins today?

Four children were born at City Hospital yesterday. Assume each child is equally likely to be a boy or a girl. Which of the following outcomes is most likely?

A cube with $3$-inch edges is to be constructed from $27$ smaller cubes with $1$-inch edges. Twenty-one of the cubes are colored red and $6$ are colored white. If the $3$-inch cube is constructed to have the smallest possible white surface area showing, what fraction of the surface area is white?

Rectangle ABCD has sides CD=3 and DA=5. A circle of radius 1 is centered at A, a circle of radius 2 is centered at B, and a circle of radius 3 is centered at C. Which of the following is closest to the area of the region inside the rectangle but outside all three circles?


The 7-digit numbers $\underline{7} \underline{4} \underline{A} \underline{5} \underline{2} \underline{B} \underline{1}$ and $\underline{3} \underline{2} \underline{6} \underline{A} \underline{B} \underline{4} \underline{C}$ are each multiples of 3. Which of the following could be the value of $C$?

A 2-digit number is such that the product of the digits plus the sum of the digits is equal to the number. What is the units digit of the number?

Three members of the Euclid Middle School girls' softball team had the following conversation. Ashley: I just realized that our uniform numbers are all $2$-digit primes. Bethany: And the sum of your two uniform numbers is the date of my birthday earlier this month. Caitlin: That's funny. The sum of your two uniform numbers is the date of my birthday later this month. Ashley: And the sum of your two uniform numbers is today's date. What number does Caitlin wear?

One day the Beverage Barn sold 252 cans of soda to 100 customers, and every customer bought at least one can of soda. What is the maximum possible median number of cans of soda bought per customer on that day?

A straight one-mile stretch of highway, 40 feet wide, is closed. Robert rides his bike on a path composed of semicircles as shown. If he rides at 5 miles per hour, how many hours will it take to cover the one-mile stretch? Note: 1 mile= 5280 feet


Triangle $BCF$ has a right angle at $B$. Let $A$ be the point on line $CF$ such that $FA=FB$ and $F$ lies between $A$ and $C$. Point $D$ is chosen so that $DA=DC$ and $AC$ is the bisector of $\angle{DAB}$. Point $E$ is chosen so that $EA=ED$ and $AD$ is the bisector of $\angle{EAC}$. Let $M$ be the midpoint of $CF$. Let $X$ be the point such that $AMXE$ is a parallelogram. Prove that $BD,FX$ and $ME$ are concurrent.

Find all integers $n$ for which each cell of $n \times n$ table can be filled with one of the letters $I,M$ and $O$ in such a way that: in each row and each column, one third of the entries are $I$, one third are $M$ and one third are $O$; and in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are $I$, one third are $M$ and one third are $O$. Note. The rows and columns of an $n \times n$ table are each labelled $1$ to $n$ in a natural order. Thus each cell corresponds to a pair of positive integer $(i,j)$ with $1 \le i,j \le n$. For $n>1$, the table has $4n-2$ diagonals of two types. A diagonal of first type consists all cells $(i,j)$ for which $i+j$ is a constant, and the diagonal of this second type consists all cells $(i,j)$ for which $i-j$ is constant.

Let $P=A_1A_2\cdots A_k$ be a convex polygon in the plane. The vertices $A_1, A_2, \ldots, A_k$ have integral coordinates and lie on a circle. Let $S$ be the area of $P$. An odd positive integer $n$ is given such that the squares of the side lengths of $P$ are integers divisible by $n$. Prove that $2S$ is an integer divisible by $n$.

A set of postive integers is called fragrant if it contains at least two elements and each of its elements has a prime factor in common with at least one of the other elements. Let $P(n)=n^2+n+1$. What is the least possible positive integer value of $b$ such that there exists a non-negative integer $a$ for which the set $$\{P(a+1),P(a+2),\ldots,P(a+b)\}$$is fragrant?

The equation $$(x-1)(x-2)\cdots(x-2016)=(x-1)(x-2)\cdots (x-2016)$$is written on the board, with $2016$ linear factors on each side. What is the least possible value of $k$ for which it is possible to erase exactly $k$ of these $4032$ linear factors so that at least one factor remains on each side and the resulting equation has no real solutions?

There are $n\ge 2$ line segments in the plane such that every two segments cross and no three segments meet at a point. Geoff has to choose an endpoint of each segment and place a frog on it facing the other endpoint. Then he will clap his hands $n-1$ times. Every time he claps,each frog will immediately jump forward to the next intersection point on its segment. Frogs never change the direction of their jumps. Geoff wishes to place the frogs in such a way that no two of them will every occupy the same intersection point at the same time. (a) Prove that Geoff can always fulfill his wish if $n$ is odd. (b) Prove that Geoff can never fulfill his wish if $n$ is even.

We say that a finite set $\mathcal{S}$ of points in the plane is balanced if, for any two different points $A$ and $B$ in $\mathcal{S}$, there is a point $C$ in $\mathcal{S}$ such that $AC=BC$. We say that $\mathcal{S}$ is centre-free if for any three different points $A$, $B$ and $C$ in $\mathcal{S}$, there is no points $P$ in $\mathcal{S}$ such that $PA=PB=PC$. (a) Show that for all integers $n\ge 3$, there exists a balanced set consisting of $n$ points. (b) Determine all integers $n\ge 3$ for which there exists a balanced centre-free set consisting of $n$ points. Proposed by Netherlands

Find all postive integers $(a,b,c)$ such that $$ab-c,\quad bc-a,\quad ca-b$$are all powers of $2$. Proposed by Serbia

Let $ABC$ be an acute triangle with $AB > AC$. Let $\Gamma $ be its cirumcircle, $H$ its orthocenter, and $F$ the foot of the altitude from $A$. Let $M$ be the midpoint of $BC$. Let $Q$ be the point on $\Gamma$ such that $\angle HQA = 90^{\circ}$ and let $K$ be the point on $\Gamma$ such that $\angle HKQ = 90^{\circ}$. Assume that the points $A$, $B$, $C$, $K$ and $Q$ are all different and lie on $\Gamma$ in this order. Prove that the circumcircles of triangles $KQH$ and $FKM$ are tangent to each other. Proposed by Ukraine

Triangle $ABC$ has circumcircle $\Omega$ and circumcenter $O$. A circle $\Gamma$ with center $A$ intersects the segment $BC$ at points $D$ and $E$, such that $B$, $D$, $E$, and $C$ are all different and lie on line $BC$ in this order. Let $F$ and $G$ be the points of intersection of $\Gamma$ and $\Omega$, such that $A$, $F$, $B$, $C$, and $G$ lie on $\Omega$ in this order. Let $K$ be the second point of intersection of the circumcircle of triangle $BDF$ and the segment $AB$. Let $L$ be the second point of intersection of the circumcircle of triangle $CGE$ and the segment $CA$. Suppose that the lines $FK$ and $GL$ are different and intersect at the point $X$. Prove that $X$ lies on the line $AO$. Proposed by Greece

Let $\mathbb R$ be the set of real numbers. Determine all functions $f:\mathbb R\to\mathbb R$ that satisfy the equation\[f(x+f(x+y))+f(xy)=x+f(x+y)+yf(x)\]for all real numbers $x$ and $y$. Proposed by Dorlir Ahmeti, Albania

The sequence $a_1,a_2,\dots$ of integers satisfies the conditions: (i) $1\le a_j\le2015$ for all $j\ge1$, (ii) $k+a_k\neq \ell+a_\ell$ for all $1\le k<\ell$. Prove that there exist two positive integers $b$ and $N$ for which\[\left\vert\sum_{j=m+1}^n(a_j-b)\right\vert\le1007^2\]for all integers $m$ and $n$ such that $n>m\ge N$. Proposed by Ivan Guo and Ross Atkins, Australia

Let $a_0 < a_1 < a_2 \ldots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n\geq 1$ such that \[a_n < \frac{a_0+a_1+a_2+\cdots+a_n}{n} \leq a_{n+1}.\] Proposed by Gerhard Wöginger, Austria.

Let $n \ge 2$ be an integer. Consider an $n \times n$ chessboard consisting of $n^2$ unit squares. A configuration of $n$ rooks on this board is peaceful if every row and every column contains exactly one rook. Find the greatest positive integer $k$ such that, for each peaceful configuration of $n$ rooks, there is a $k \times k$ square which does not contain a rook on any of its $k^2$ unit squares.

Convex quadrilateral $ABCD$ has $\angle ABC = \angle CDA = 90^{\circ}$. Point $H$ is the foot of the perpendicular from $A$ to $BD$. Points $S$ and $T$ lie on sides $AB$ and $AD$, respectively, such that $H$ lies inside triangle $SCT$ and \[ \angle CHS - \angle CSB = 90^{\circ}, \quad \angle THC - \angle DTC = 90^{\circ}. \] Prove that line $BD$ is tangent to the circumcircle of triangle $TSH$.

Let $P$ and $Q$ be on segment $BC$ of an acute triangle $ABC$ such that $\angle PAB=\angle BCA$ and $\angle CAQ=\angle ABC$. Let $M$ and $N$ be the points on $AP$ and $AQ$, respectively, such that $P$ is the midpoint of $AM$ and $Q$ is the midpoint of $AN$. Prove that the intersection of $BM$ and $CN$ is on the circumference of triangle $ABC$. Proposed by Giorgi Arabidze, Georgia.