
Geometry

Basic Trigonometry in Geometry

Math for Gifted Students

<http://www.mathallstar.org>

Basic Trigonometry in Geometry

Instructions

- Write down and submit intermediate steps along with your final answer.
- If the final result is too complex to compute, give the expression. e.g. C_{100}^{50} is acceptable.
- Problems are not necessarily ordered based on their difficulty levels.
- Always ask yourself what makes this problem a good practice?
- Read through the reference solution even if you can solve the problem for additional information which may help you to solve this type of problems.

Legends

- Tips, additional information etc
- Important theorem, conclusion to remember.
- Addition questions for further study.

My Comments and Notes

Basic Trigonometry in Geometry

Unless otherwise noted, the following conventions will be followed in this practice:

In a given $\triangle ABC$:

- Uppercase letters A , B , and C represent measurements of internal angles
- Lowercase letters a , b , and c represent lengths of corresponding opposite sides

Geometry

Basic Trigonometry in Geometry

Practice 1

Let S be the area of $\triangle ABC$, show that:

$$S = \frac{1}{2} \cdot ab \sin C = \frac{1}{2} \cdot bc \sin A = \frac{1}{2} \cdot ca \sin B$$

Practice 2

(Law of Sine) Show that the following relationship holds for any triangle:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Practice 3

(Law of Cosine) Show that the following relationships hold for any triangle:

$$\begin{cases} a^2 = b^2 + c^2 - 2bc \cos A \\ b^2 = c^2 + a^2 - 2ca \cos B \\ c^2 = a^2 + b^2 - 2ab \cos C \end{cases}$$

Practice 4

(Circumradius) Let R be the circumradius of $\triangle ABC$, show that

$$R = \frac{a}{2 \cdot \sin A} = \frac{b}{2 \cdot \sin B} = \frac{c}{2 \cdot \sin C}$$

Geometry

Basic Trigonometry in Geometry

Practice 5

(Circumradius) Let S and R be the area and circumradius of $\triangle ABC$, respectively, show that

$$S = 2R^2 \sin A \sin B \sin C$$

Practice 6

(Steward Theorem) Given a triangle as shown on the right where each letter represents the length of a corresponding segment, show that the following relationship holds

$$b^2m + c^2n = a(d^2 + mn)$$

Practice 7

($\sin 18^\circ$) Utilizing the graph on the right to compute the value of $\sin 18^\circ$.

$AB = AC, \angle A = 36^\circ, CD$ bisects $\angle ACB$

Basic Trigonometry in Geometry

Practice 8

(sum of sine) Utilizing the graph on the right to derive the sum of sine formula:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

Practice 9

(sin 15°) Show that $\sin 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}$. Can you solve this problem using more than one method?

Practice 10

(Trigonometry Form of Ceva's Theorem)
As shown on the right, show that:

$$\frac{\sin BAD}{\sin DAC} \cdot \frac{\sin ACF}{\sin FCB} \cdot \frac{\sin CBE}{\sin EBA} = 1$$

Basic Trigonometry in Geometry

Practice 1

Let S be the area of $\triangle ABC$, show that:

$$S = \frac{1}{2} \cdot ab \sin C = \frac{1}{2} \cdot bc \sin A = \frac{1}{2} \cdot ca \sin B$$

Let's prove $S = \frac{1}{2} \cdot ab \sin C$ here. The other two relationships can be proved in a similar way.

Draw an altitude from B and let its foot on AC be D . Then we have (note that $\overline{BC} = a$ and $\overline{AC} = b$)

$$S = \frac{1}{2} \cdot \overline{AC} \cdot \overline{BD} = \frac{1}{2} \cdot \overline{AC} \cdot (\overline{BC} \cdot \sin C) = \frac{1}{2} \cdot ab \sin C$$

Practice 2

(Law of Sine) Show that the following relationship holds for any triangle:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

From the previous practice, we know: $S = \frac{1}{2} \cdot ab \sin C = \frac{1}{2} \cdot bc \sin A = \frac{1}{2} \cdot ca \sin B$, or

$$bc \sin A = ca \sin B = ab \sin C$$

Dividing every term with abc which is non-zero leading to the conclusion:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Basic Trigonometry in Geometry

Practice 3

(Law of Cosine) Show that the following relationships hold for any triangle:

$$\begin{cases} a^2 = b^2 + c^2 - 2bc \cos A \\ b^2 = c^2 + a^2 - 2ca \cos B \\ c^2 = a^2 + b^2 - 2ab \cos C \end{cases}$$

Let's prove the first relationship here. The other two can be proved similarly. There are several different proofs. Here we present two of them.

Proof 1

Draw an altitude from B and let its foot on AC be D . Note that $\overline{BC} = a$, $\overline{AC} = b$, and $\overline{AB} = c$, we have:

$$\begin{aligned} a^2 &= h^2 + m^2 = (c^2 - n^2) + (b - n)^2 \\ &= c^2 - n^2 + b^2 - 2bn + n^2 \\ &= b^2 + c^2 - 2b \cdot n \\ &= b^2 + c^2 - 2bc \cdot \sin A \end{aligned}$$

Proof 2

Let's put $\triangle ABC$ on a coordinate plane such that A is the origin and B is on the x -axis. It is then easy to see B 's coordinate is $(c, 0)$ and C 's coordinate is $(b \cos A, b \sin A)$. Hence, by the distance formula, we have:

$$\begin{aligned} a^2 &= (b \cos A - c)^2 + (b \sin A - 0)^2 \\ &= b^2 \cos^2 A - 2bc \cdot \cos A + c^2 + b^2 \sin^2 A \\ &= b^2(\cos^2 A + \sin^2 A) + c^2 - 2bc \cdot \cos A \\ &= b^2 + c^2 - 2bc \cdot \cos A \end{aligned}$$

Tip: The combination of trigonometry and coordinate system provides a powerful way to transform a geometry problem to a straightforward computation.

Basic Trigonometry in Geometry

Practice 4

(Circumradius) Let R be the circumradius of $\triangle ABC$, show that

$$R = \frac{a}{2 \cdot \sin A} = \frac{b}{2 \cdot \sin B} = \frac{c}{2 \cdot \sin C}$$

Let's prove $R = \frac{a}{2 \cdot \sin A}$ here. The other two relationships can be proved in a similar way.

Let O be the circumcircle of $\triangle ABC$. Connect OB , OC , and OD , where D is the middle point of BC .

O is the circumcenter $\implies OD \perp BC$ and OD bisects $\angle BOC$.

Meanwhile $\angle BOC = 2\angle A \implies \angle BOD = \angle A$

Now consider right $\triangle BOD$, we have $OB = R$, $BD = \frac{a}{2}$, and $\angle BOD = \angle A$. Therefore

$$BD = OB \cdot \angle BOD \implies \frac{a}{2} = R \sin A \implies R = \frac{a}{2 \cdot \sin A}$$

Practice 5

(Circumradius) Let S and R be the area and circumradius of $\triangle ABC$, respectively, show that

$$S = 2R^2 \sin A \sin B \sin C$$

By the previous practice, we know $R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B}$. Hence:

$$S = \frac{1}{2} \cdot ab \sin C = \frac{1}{2} \cdot (2R \sin A)(2R \sin B) \sin C = 2R^2 \sin A \sin B \sin C$$

Basic Trigonometry in Geometry

Practice 6

(Steward Theorem) Given a triangle as shown on the right where each letter represents the length of a corresponding segment, show that the following relationship holds

$$b^2m + c^2n = a(d^2 + mn)$$

By the Law of Cosine, we have:

$$\begin{cases} b^2 = n^2 + d^2 - 2nd \cdot \cos \angle BDA \\ c^2 = m^2 + d^2 - 2md \cdot \cos \angle CDA \end{cases}$$

Multiplying both sides of the 1st equation by m , both sides of the 2nd by n :

$$\begin{cases} b^2m = n^2m + d^2m - 2mnd \cdot \cos \angle BDA \\ c^2n = m^2n + d^2n - 2mnd \cdot \cos \angle CDA \end{cases}$$

Note that $\angle BDA + \angle CDA = \pi \implies \cos \angle BDA + \cos \angle CDA = 0$. Adding these two equations above give us:

$$\begin{aligned} b^2m + c^2n &= (n^2m + m^2n) + (d^2m + d^2)n \\ b^2m + c^2n &= (n + m)mn + d^2(m + n) \\ b^2m + c^2n &= (n + m)(mn + d^2) \\ b^2m + c^2n &= a(d^2 + mn) \end{aligned}$$

Basic Trigonometry in Geometry

Practice 7

(sin 18°) Utilizing the graph on the right to compute the value of $\sin 18^\circ$.

$AB = AC, \angle A = 36^\circ, CD$ bisects $\angle ACB$

It is easy to check that $\angle DCA = 36^\circ = \angle A$, and $\angle BDC = 72^\circ = \angle B$.

Hence we have $AD = DC = CB$. Without loss of generality, let $AC = AB = 1$, $AD = DC = CB = x$, and $DB = 1 - x$.

By the angle bisector theorem, we have

$$\frac{AC}{AD} = \frac{CB}{BD} \implies \frac{1}{x} = \frac{x}{1-x}$$

Solving the above equation and discarding the negative value give us $x = \frac{\sqrt{5} - 1}{2}$.

Because $\angle A = 36^\circ$ and $AB = AC$, we have

$$\sin 18^\circ = \frac{x}{2} = \frac{\sqrt{5} - 1}{4}$$

Practice 8

(sum of sine) Utilizing the graph on the right to derive the sum of sine formula:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

We can employ the area method here. Clearly the area of the bigger triangle equals the sum of

Basic Trigonometry in Geometry

those of the two smaller ones. Therefore, we have:

$$\begin{aligned}\frac{1}{2}ac \cdot \sin(\alpha + \beta) &= \frac{1}{2}ab \cdot \sin \alpha + \frac{1}{2}bc \cdot \sin \beta \\ \sin(\alpha + \beta) &= \frac{b}{c} \cdot \sin \alpha + \frac{b}{a} \cdot \sin \beta \\ \sin(\alpha + \beta) &= \sin \alpha \cos \beta + \cos \alpha \sin \beta\end{aligned}$$

Practice 9

(sin 15°) Show that $\sin 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}$. Can you solve this problem using more than one method?

- i** *Tip: This problem can be solved using the angle bisector theorem, just as we did to compute $\sin 18^\circ$ earlier. Meanwhile, it can also be solved using the Sum of Sine formula we just derived.*
- i** *Tip: We will show the 2nd approach. It involves some techniques to simplify computation. You are encouraged to use the angle bisector theorem to solve this problem yourself.*

Setting $\alpha = \beta$ in the sum of sine formula leads to the double angle formula:

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha$$

Further setting $\alpha = 15^\circ$ yields:

$$\sin 30^\circ = 2 \cdot \sin 15^\circ \cos 15^\circ$$

Let $x = \sin 15^\circ$, we have

$$\begin{aligned}\frac{1}{2} &= 2x\sqrt{1 - x^2} \\ 1 &= 4x\sqrt{1 - x^2} \\ 1 &= 16x^2(1 - x^2) \\ 16x^4 - 16x^2 + 1 &= 0 \\ (4x^2 - 2)^2 &= 3 \\ x^2 &= \frac{2 \pm \sqrt{3}}{4}\end{aligned}$$

Basic Trigonometry in Geometry

Because $0 < \sin 15^\circ < \sin 30^\circ = \frac{1}{2} \implies x^2 < \frac{1}{4}$, it must hold that

$$x^2 = \frac{2 - \sqrt{3}}{4} \implies x = \frac{\sqrt{2 - \sqrt{3}}}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

i *Tip: The technique used to simplify nested radical expression in the last step is discussed in the Power Calculation lecture and practice.*

Practice 10

(Trigonometry Form of Ceva's Theorem)

As shown on the right, show that:

$$\frac{\sin \angle BAD}{\sin \angle DAC} \cdot \frac{\sin \angle ACF}{\sin \angle FCB} \cdot \frac{\sin \angle CBE}{\sin \angle EBA} = 1$$

i *Tip: When cevians and ratios are involved, the area method is always a good candidate to consider.*

We have the following relationship:

$$\frac{S_{\triangle ABO}}{S_{\triangle AOC}} = \frac{\frac{1}{2} \cdot AB \cdot AO \cdot \sin \angle BAD}{\frac{1}{2} \cdot AO \cdot AC \cdot \sin \angle DAC} = \frac{AB \cdot \sin \angle BAD}{AC \cdot \sin \angle DAC} \implies \frac{\sin \angle BAD}{\sin \angle DAC} = \frac{S_{\triangle ABO} \cdot AC}{S_{\triangle OAC} \cdot AB}$$

Similarly, we have:

$$\frac{\sin \angle ACF}{\sin \angle FCB} = \frac{S_{\triangle ACO} \cdot BC}{S_{\triangle OCB} \cdot AC}$$

$$\frac{\sin \angle CBE}{\sin \angle EBA} = \frac{S_{\triangle CBO} \cdot AB}{S_{\triangle OBA} \cdot BC}$$

Multiplying these three equations gives us:

$$\frac{\sin \angle BAD}{\sin \angle DAC} \cdot \frac{\sin \angle ACF}{\sin \angle FCB} \cdot \frac{\sin \angle CBE}{\sin \angle EBA} = \frac{S_{\triangle ABO} \cdot AC}{S_{\triangle OAC} \cdot AB} \cdot \frac{S_{\triangle ACO} \cdot BC}{S_{\triangle OCB} \cdot AC} \cdot \frac{S_{\triangle CBO} \cdot AB}{S_{\triangle OBA} \cdot BC} = 1$$