Trigonometry

Basics Reinforcement

http://www.mathallstar.org

Basics Reinforcement

Instructions

- Write down and submit intermediate steps along with your final answer.
- If the final result is too complex to compute, give the expression. e.g. C_{100}^{50} is acceptable.
- Problems are not necessarily ordered based on their difficulty levels.
- Always ask yourself what makes this problem a good practice?
- Read through the reference solution even if you can solve the problem for additional information which may help you to solve this type of problems.

Legends

(i) Tips, additional information etc
(2) Important theorem, conclusion to remember.
(1) Addition questions for further study.

My Comments and Notes

Trigonometry

Basics Reinforcement

Practice 1

Convert between radian and degree measures:
(i) 30°
(v) 120°
(viii) $\frac{\pi}{6}$
(ii) 45°
(vi) 270°
(ix) $-\frac{3 \pi}{5}$
(iii) 60°
(vii) $\quad-\frac{\pi}{4}$
(x) 2π

Practice 2

Complete the following table:

	0°	30°	45°	60°	90°	120°	150°	270°	360°	540°
\sin										
\cos										
\tan										

Practice 3

Which of the following equations always hold?
(i) $\sin ^{2} \theta+\cos ^{2} \theta=1$
(v) $\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta$
(ii) $\tan \theta=\cos \theta / \sin \theta$
(vi) $\sin \left(\frac{\pi}{2}+\theta\right)=-\cos \theta$
(iii) $\sin (-\theta)=\sin \theta$
(iv) $\cos (\pi-\theta)=\cos \theta$
(vii) $1+\tan ^{2} \theta=\frac{1}{\cos ^{2} \theta}$

Practice 4

What are the ranges of the \sin , \cos, and tan function, respectively?

Basics Reinforcement

Practice 5

When θ increases from 0 to $\frac{\pi}{2}$, determine whether each statement below is true or not:
(i) the value of $\sin \theta$ increases
(ii) the value of $\cos \theta$ increases
(iii) the value of $\tan \theta$ increases

Practice 6

When $\frac{\pi}{4}<\theta<\frac{\pi}{2}$, which of the following statement holds?
(i) $\sin \theta>\cos \theta>\tan \theta$
(ii) $\cos \theta>\tan \theta>\sin \theta$
(iii) $\tan \theta>\sin \theta>\cos \theta$
(iv) $\sin \theta>\tan \theta>\cos \theta$

Practice 7

Let x be a real number and $0 \leq x \leq \frac{\pi}{2}$, explain why the following inequality holds and when the equality sign holds:

$$
\sin x \leq x \leq \tan x
$$

Practice 8

Find all angles $\theta \in[0,2 \pi)$ such that $\sin \theta=\frac{1}{2}$. Express your answer in radian.

Practice 9

Find all angles θ such that $\sin \theta=\frac{1}{2}$. Express your answer in radian.

Practice 10

Find all angles θ such that $\sin \theta \leq \frac{1}{2}$. Express your answer in radian.

Trigonometry
Basics Reinforcement

Answer Keys

Practice 1:
(i) $30^{\circ}=\frac{\pi}{6}$
(v) $120^{\circ}=\frac{2 \pi}{3}$
(viii) $\frac{\pi}{6}=30^{\circ}$
(ii) $45^{\circ}=\frac{\pi}{4}$
(iii) $60^{\circ}=\frac{\pi}{3}$
(vi) $270^{\circ}=\frac{3 \pi}{2}$
(ix) $\quad-\frac{3 \pi}{5}=108^{\circ}$
(iv) $90^{\circ}=\frac{\pi}{2}$
(vii) $\quad-\frac{\pi}{4}=-45^{\circ}$
(x) $2 \pi=360^{\circ}$

Practice 2:

	0°	30°	45°	60°	90°	120°	150°	270°	360°	540°
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	-1	0	0
\sin	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	0	1	-1
\tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$+\infty$	$-\sqrt{3}$	$-\frac{\sqrt{3}}{3}$	$-\infty$	0	0

Practice 3:
(i) TRUE
(v) TRUE
(ii) FALSE
(vi) TRUE
(iii) FALSE
(iv) FALSE
(vii) TRUE

Trigonometry
Basics Reinforcement

Practice 4: $\quad[-1,1], \quad[-1,1], \quad(-\infty,+\infty)$
Practice 5:
(i) True
(ii) False
(iii) True

Practice 6:
Practice 7:

The equality holds when $x=0$.

Practice 8: $\quad \theta=\frac{\pi}{6}, \quad \frac{5 \pi}{6}$
Practice 9: $\quad \theta=2 k \pi+\frac{\pi}{6}, \quad 2 k \pi+\frac{5 \pi}{6} \quad$ where k is an integer, or

$$
\theta=k \pi+(-1)^{k} \cdot \frac{\pi}{6} \quad \text { where } k \text { is an integer. }
$$

Practice 10:
$\theta \in\left[2 k \pi,\left(2 k+\frac{1}{6}\right) \pi\right] \cup\left[2 k \pi+\frac{5 \pi}{6},(2 k+2) \pi\right]$, where $k \in \mathbb{Z}$, or $\theta \in\left[\left(2 k-\frac{7}{6}\right) \pi,\left(2 k+\frac{1}{6}\right) \pi\right]$, where $k \in \mathbb{Z}$

